Multi-User Physical-Layer Authentication and Classification

被引:8
作者
Xie, Ning [1 ]
Sha, Mingrui [1 ]
Hu, Tianxing [1 ]
Tan, Haijun [1 ]
机构
[1] Shenzhen Univ, Coll Elect & Informat Engn, Guangdong Key Lab Intelligent Informat Proc, Shenzhen 518060, Peoples R China
关键词
Physical-layer authentication; multi-user classification; authentication accuracy; classification accuracy; signal design; RATE-EXPONENT REGION; WIRELESS; COMMUNICATION; INTERNET; CHANNEL; THINGS;
D O I
10.1109/TWC.2023.3240021
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
This paper concerns the problem of authenticating different transmitters at the physical layer in a multi-user scenario. In this paper, we propose two tag-based Physical-Layer Authentication (PLA) schemes in a multi-user scenario. We name the first scheme as the Multi-User Physical Layer Authentication and Classification (MU-PLAC) scheme, which not only detects an impersonation attack but also achieves multi-user classification. For further improving the performance of the MU-PLAC scheme for a two-user scenario, we propose an enhanced version of the MU-PLAC scheme by elaborately designing the tags of two legitimate users. We name the second scheme as the Enhanced Multi-User Physical Layer Authentication and Classification (EMU-PLAC) scheme. We provide the theoretical analysis of the proposed schemes over wireless fading channels and derive their closed-form expressions. We implement the proposed schemes and conduct extensive performance comparisons. Our simulation results show that, for a two-user scenario, the EMU-PLAC scheme provides better classification accuracy and authentication accuracy as compared with the MU-PLAC scheme.
引用
收藏
页码:6171 / 6184
页数:14
相关论文
共 32 条
  • [11] Cryptographic Side-Channel Signaling and Authentication via Fingerprint Embedding
    Perazzone, Jake Bailey
    Yu, Paul L.
    Sadler, Brian M.
    Blum, Rick S.
    [J]. IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, 2018, 13 (09) : 2216 - 2225
  • [12] Artificial Inteligence-Based Security Authentication: Applications in Wireless Multimedia Networks
    Qiu, Xiaoying
    Du, Zhiguo
    Sun, Xuan
    [J]. IEEE ACCESS, 2019, 7 : 172004 - 172011
  • [13] Physical Layer Authentication Enhancement Using a Gaussian Mixture Model
    Qiu, Xiaoying
    Jiang, Ting
    Wu, Sheng
    Hayes, Monson
    [J]. IEEE ACCESS, 2018, 6 : 53583 - 53592
  • [14] Runfa Liao, 2019, 2019 IEEE International Conference on Artificial Intelligence and Computer Applications (ICAICA), P231, DOI 10.1109/ICAICA.2019.8873460
  • [15] COMMUNICATION THEORY OF SECRECY SYSTEMS
    SHANNON, CE
    [J]. BELL SYSTEM TECHNICAL JOURNAL, 1949, 28 (04): : 656 - 715
  • [16] Simon M. K., 2005, DIGITAL COMMUNICATIO
  • [17] Zero-forcing methods for downlink spatial multiplexing in multiuser MIMO channels
    Spencer, QH
    Swindlehurst, AL
    Haardt, M
    [J]. IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2004, 52 (02) : 461 - 471
  • [18] Robust and secure image hashing
    Swaminathan, Ashwin
    Mao, Yinian
    Wu, Min
    [J]. IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, 2006, 1 (02) : 215 - 230
  • [19] A Survey of Physical-Layer Authentication in Wireless Communications
    Xie, Ning
    Li, Zhuoyuan
    Tan, Haijun
    [J]. IEEE COMMUNICATIONS SURVEYS AND TUTORIALS, 2021, 23 (01): : 282 - 310
  • [20] A Machine Learning Approach to Blind Multi-Path Classification for Massive MIMO Systems
    Xie, Ning
    Ou-Yang, Le
    Liu, Alex X.
    [J]. IEEE-ACM TRANSACTIONS ON NETWORKING, 2020, 28 (05) : 2309 - 2322