UNROLLED IPPG: VIDEO HEART RATE ESTIMATION VIA UNROLLING PROXIMAL GRADIENT DESCENT

被引:3
作者
Shenoy, Vineet R. [2 ]
Marks, Tim K. [1 ]
Mansour, Hassan [1 ]
Lohit, Suhas [1 ]
机构
[1] Mitsubishi Elect Res Labs MERL, Cambridge, MA USA
[2] Johns Hopkins Univ, Baltimore, MD 21205 USA
来源
2023 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING, ICIP | 2023年
关键词
Heart rate estimation; imaging photoplethysmography; remote photoplethysmography; unrolling algorithms; NONCONTACT;
D O I
10.1109/ICIP49359.2023.10222169
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Imaging photoplethysmography (iPPG) is the process of estimating a person's heart rate from video. In this work, we propose Unrolled iPPG, in which we integrate iterative optimization updates with deep learning-based signal priors to estimate the pulse waveform and heart rate from facial videos. We model the signal extracted from video as the sum of an underlying pulse signal and noise, but instead of explicitly imposing a handcrafted prior (e.g., sparsity in the frequency domain) on the signal, we learn priors on the signal and noise using neural networks. We solve for the underlying pulse signal by unrolling proximal gradient descent; the algorithm alternates between gradient descent steps and application of learned denoisers, which replace handcrafted priors and their proximal operators. Using this method, we achieve state-of-the-art heart rate estimation on the challenging MMSE-HR dataset.
引用
收藏
页码:2715 / 2719
页数:5
相关论文
共 29 条
[1]   Detecting Pulse from Head Motions in Video [J].
Balakrishnan, Guha ;
Durand, Fredo ;
Guttag, John .
2013 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2013, :3430-3437
[2]   A Fast Iterative Shrinkage-Thresholding Algorithm for Linear Inverse Problems [J].
Beck, Amir ;
Teboulle, Marc .
SIAM JOURNAL ON IMAGING SCIENCES, 2009, 2 (01) :183-202
[3]   DeepPhys: Video-Based Physiological Measurement Using Convolutional Attention Networks [J].
Chen, Weixuan ;
McDuff, Daniel .
COMPUTER VISION - ECCV 2018, PT II, 2018, 11206 :356-373
[4]  
Cho Youngjun, 2017, 2017 7 INT C AFF COM
[5]   TURNIP: TIME-SERIES U-NET WITH RECURRENCE FOR NIR IMAGING PPG [J].
Comas, Armand ;
Marks, Tim K. ;
Mansour, Hassan ;
Lohit, Suhas ;
Ma, Yechi ;
Liu, Xiaoming .
2021 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2021, :309-313
[6]   Learned SPARCOM: unfolded deep super-resolution microscopy [J].
Dardikman-Yoffe, Gili ;
Eldar, Yonina C. .
OPTICS EXPRESS, 2020, 28 (19) :27736-27763
[7]   Improved motion robustness of remote-PPG by using the blood volume pulse signature [J].
de Haan, G. ;
van Leest, A. .
PHYSIOLOGICAL MEASUREMENT, 2014, 35 (09) :1913-1926
[8]   Robust Pulse Rate From Chrominance-Based rPPG [J].
de Haan, Gerard ;
Jeanne, Vincent .
IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, 2013, 60 (10) :2878-2886
[9]  
Dubois J., 2021, Adv. Neural Inform. Process. Syst. (NIPS), V124, P4955
[10]  
Gregor K, 2010, P 27 INT C INT C MAC