On the uniform vanishing property at infinity of Ws,p-sequences

被引:3
作者
Ambrosio, Vincenzo [1 ]
机构
[1] Univ Politecn Marche, Dipartimento Ingn Ind & Sci Matemat, Via Brecce Bianche 12, I-60131 Ancona, Italy
关键词
W s; p-spaces; Uniform vanishing at infinity; Fractional operators; WEAK SOLUTIONS; MULTIPLICITY; REGULARITY;
D O I
10.1016/j.na.2023.113398
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We prove that sequences of functions (un) subset of Ws,p(RN), with s is an element of (0, 1) and Np p is an element of (1, Ns ), bounded in Ws,p(RN), strongly convergent in LN-sp (RN) and solving nonlinear fractional p-Laplacian Schrodinger equations in RN, must vanish at infinity uniformly with respect to n is an element of N. (c) 2023 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
引用
收藏
页数:17
相关论文
共 20 条
[1]  
Alves CO, 2006, DIFFER INTEGRAL EQU, V19, P143
[2]  
Alves CO, 2016, CALC VAR PARTIAL DIF, V55, DOI 10.1007/s00526-016-0983-x
[3]  
Ambrosio V., 2021, Frontiers in Elliptic and Parabolic Problems
[4]   MULTIPLICITY AND CONCENTRATION RESULTS FOR SOME NONLINEAR SCHRODINGER EQUATIONS WITH THE FRACTIONAL p-LAPLACIAN [J].
Ambrosio, Vincenzo ;
Isernia, Teresa .
DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2018, 38 (11) :5835-5881
[5]  
Brasco L, 2016, Arxiv, DOI arXiv:1409.6284
[6]  
Brezis H, 2011, UNIVERSITEXT, P1
[7]  
BREZIS H, 1979, J MATH PURE APPL, V58, P137
[8]   An extension problem related to the fractional Laplacian [J].
Caffarelli, Luis ;
Silvestre, Luis .
COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 2007, 32 (7-9) :1245-1260
[9]   Spectrum of the fractional p-Laplacian in RN and decay estimate for positive solutions of a Schrodinger equation [J].
Del Pezzo, Leandro M. ;
Quaas, Alexander .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2020, 193
[10]   Hitchhiker's guide to the fractional Sobolev spaces [J].
Di Nezza, Eleonora ;
Palatucci, Giampiero ;
Valdinoci, Enrico .
BULLETIN DES SCIENCES MATHEMATIQUES, 2012, 136 (05) :521-573