Short-term wind speed forecasting based on a hybrid model of ICEEMDAN, MFE, LSTM and informer

被引:10
|
作者
Wang Xinxin [1 ]
Shen Xiaopan [1 ]
Ai Xueyi [1 ]
Li Shijia [1 ]
机构
[1] Wuhan Univ Sci & Technol, Sch Management, Wuhan, Peoples R China
来源
PLOS ONE | 2023年 / 18卷 / 09期
关键词
EXTREME LEARNING-MACHINE; DECOMPOSITION; OPTIMIZATION;
D O I
10.1371/journal.pone.0289161
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Wind energy, as a kind of environmentally friendly renewable energy, has attracted a lot of attention in recent decades. However, the security and stability of the power system is potentially affected by large-scale wind power grid due to the randomness and intermittence of wind speed. Therefore, accurate wind speed prediction is conductive to power system operation. A hybrid wind speed prediction model based on Improved Complete Ensemble Empirical Mode Decomposition with Adaptive Noise (ICEEMDAN), Multiscale Fuzzy Entropy (MFE), Long short-term memory (LSTM) and INFORMER is proposed in this paper. Firstly, the wind speed data are decomposed into multiple intrinsic mode functions (IMFs) by ICEEMDAN. Then, the MFE values of each mode are calculated, and the modes with similar MFE values are aggregated to obtain new subsequences. Finally, each subsequence is predicted by informer and LSTM, each sequence selects the one with better performance than the two predictors, and the prediction results of each subsequence are superimposed to obtain the final prediction results. The proposed hybrid model is also compared with other seven related models based on four evaluation metrics under different prediction periods to verify its validity and applicability. The experimental results indicate that the proposed hybrid model based on ICEEMDAN, MFE, LSTM and INFORMER exhibits higher accuracy and greater applicability.
引用
收藏
页数:27
相关论文
共 50 条
  • [1] A Hybrid Forecasting Model Based on CNN and Informer for Short-Term Wind Power
    Wang, Hai-Kun
    Song, Ke
    Cheng, Yi
    FRONTIERS IN ENERGY RESEARCH, 2022, 9
  • [2] Short-term wind speed forecasting based on a hybrid model
    Zhang, Wenyu
    Wang, Jujie
    Wang, Jianzhou
    Zhao, Zengbao
    Tian, Meng
    APPLIED SOFT COMPUTING, 2013, 13 (07) : 3225 - 3233
  • [3] Short-term wind speed forecasting using a hybrid model
    Jiang, Ping
    Wang, Yun
    Wang, Jianzhou
    ENERGY, 2017, 119 : 561 - 577
  • [4] Arctic short-term wind speed forecasting based on CNN-LSTM model with CEEMDAN
    Li, Qingyang
    Wang, Guosong
    Wu, Xinrong
    Gao, Zhigang
    Dan, Bo
    ENERGY, 2024, 299
  • [5] A Hybrid Neural Network Model for Short-Term Wind Speed Forecasting
    Lv, Shengxiang
    Wang, Lin
    Wang, Sirui
    ENERGIES, 2023, 16 (04)
  • [6] Developing a hybrid probabilistic model for short-term wind speed forecasting
    Zhang, Xiaobo
    APPLIED INTELLIGENCE, 2023, 53 (01) : 728 - 745
  • [7] Developing a hybrid probabilistic model for short-term wind speed forecasting
    Xiaobo Zhang
    Applied Intelligence, 2023, 53 : 728 - 745
  • [8] A Hybrid Approach for Short-Term Forecasting of Wind Speed
    Tatinati, Sivanagaraja
    Veluvolu, Kalyana C.
    SCIENTIFIC WORLD JOURNAL, 2013,
  • [9] A Hybrid Method for Short-Term Wind Speed Forecasting
    Zhang, Jinliang
    Wei, YiMing
    Tan, Zhong-fu
    Wang, Ke
    Tian, Wei
    SUSTAINABILITY, 2017, 9 (04):
  • [10] A hybrid system for short-term wind speed forecasting
    He, Qingqing
    Wang, Jianzhou
    Lu, Haiyan
    APPLIED ENERGY, 2018, 226 : 756 - 771