Research on Fault Analysis Model of Lightweight Pumping Unit Based on Classical Convolutional Neural Network

被引:2
|
作者
Han, Chuanjun [1 ]
Zhou, Xinlie [1 ]
Fan, Chunming [2 ]
Zheng, Jiawei [2 ]
机构
[1] Southwest Petr Univ, Sch Mech Engn, Chengdu, Peoples R China
[2] CNPC Baoji Oilfield Machinery Co LTD, Chengdu Res Ctr, Chengdu, Peoples R China
关键词
Fault diagnosis; Pumping unit; Neural network; Lightweight; DIAGNOSIS;
D O I
10.1007/s11668-023-01776-8
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
In the conventional sucker rod pumping system, the pumping unit often be produced many types of faults that due to the influence of sucker rod, pump, and other accessories, as well as oil well paraffinication, gas interference, sand production and other environmental impacts. Using indicator diagram to analyze the fault diagnosis of pumping units is a common method. In this paper, a lightweight model was designed based on the classical convolutional neural network, and a comparative experiment was used to optimize the model from four perspectives: learning rate, convolution kernel size, batch size, and optimization algorithm. Finally, the average accuracy achieved 95.5%.
引用
收藏
页码:2402 / 2415
页数:14
相关论文
共 50 条
  • [31] Research on Fault Diagnosis of Drilling Pump Fluid End Based on Time-Frequency Analysis and Convolutional Neural Network
    Dai, Maolin
    Huang, Zhiqiang
    PROCESSES, 2024, 12 (09)
  • [32] Transmission Line Fault Diagnosis Based on Wavelet Packet Analysis and Convolutional Neural Network
    Wang, Daohao
    Yang, Dongsheng
    Bowen, Zhou
    Ma, Min
    Zhang, Hongyu
    PROCEEDINGS OF 2018 5TH IEEE INTERNATIONAL CONFERENCE ON CLOUD COMPUTING AND INTELLIGENCE SYSTEMS (CCIS), 2018, : 425 - 429
  • [33] Convolutional Neural Network Based Fault Detection for Rotating Machinery
    Janssens, Olivier
    Slavkovikj, Viktor
    Vervisch, Bram
    Stockman, Kurt
    Loccufier, Mia
    Verstockt, Steven
    Van de Walle, Rik
    Van Hoecke, Sofie
    JOURNAL OF SOUND AND VIBRATION, 2016, 377 : 331 - 345
  • [34] Research on multitask fault diagnosis and weight visualization of rotating machinery based on convolutional neural network
    Feng, Fuzhou
    Wu, Chunzhi
    Zhu, Junzhen
    Wu, Shoujun
    Tian, Qingwen
    Jiang, Pengcheng
    JOURNAL OF THE BRAZILIAN SOCIETY OF MECHANICAL SCIENCES AND ENGINEERING, 2020, 42 (11)
  • [35] Lightweight Convolutional Neural Network Based on Singularity ROI for Fingerprint Classification
    Jian, Wen
    Zhou, Yujie
    Liu, Hongming
    IEEE ACCESS, 2020, 8 : 54554 - 54563
  • [36] Review of research on lightweight convolutional neural networks
    Zhou, Yan
    Chen, Shaochang
    Wang, Yiming
    Huan, Wenming
    PROCEEDINGS OF 2020 IEEE 5TH INFORMATION TECHNOLOGY AND MECHATRONICS ENGINEERING CONFERENCE (ITOEC 2020), 2020, : 1713 - 1720
  • [37] Bearing Fault Detection Based on Graph Cyclostationary Signal Analysis and Convolutional Neural Network
    Chen, Cong
    Li, Hui
    ADVANCED INTELLIGENT COMPUTING TECHNOLOGY AND APPLICATIONS, ICIC 2023, PT V, 2023, 14090 : 503 - 513
  • [38] Bearing Intelligent Fault Diagnosis in the Industrial Internet of Things Context: A Lightweight Convolutional Neural Network
    Wang, Yanxin
    Yan, Jing
    Sun, Qifeng
    Jiang, Qijian
    Zhou, Yizhi
    IEEE ACCESS, 2020, 8 (08): : 87329 - 87340
  • [39] Rotating machinery fault diagnosis using dimension expansion and AntisymNet lightweight convolutional neural network
    Luo, Zhiyong
    Peng, Yueyue
    Dong, Xin
    Qian, Hao
    MEASUREMENT SCIENCE AND TECHNOLOGY, 2023, 34 (11)
  • [40] Application of a combinatorial neural network model based on cluster analysis in transformer fault diagnosis
    Liu, N
    Gao, WS
    Tan, KX
    Wang, XN
    2002 IEEE REGION 10 CONFERENCE ON COMPUTERS, COMMUNICATIONS, CONTROL AND POWER ENGINEERING, VOLS I-III, PROCEEDINGS, 2002, : 1873 - 1876