Electronic structure and lithium ion diffusion in nitrogen-doped Li2FeSiO4: First-principles study

被引:0
|
作者
Wang, Jianan [1 ,2 ]
Li, Zhiqiang [1 ]
Zhu, Yongzheng [1 ]
Wei, Zheng [1 ]
Liang, Yao [1 ]
Song, Bo [3 ]
Nikiforov, Alexander [4 ]
Zhang, Zhihua [1 ]
机构
[1] Dalian Jiaotong Univ, Sch Mat Sci & Engn, Dalian 116028, Peoples R China
[2] Liaodong Univ, Sch Chem Engn & Machinery, Dandong 118001, Peoples R China
[3] Harbin Inst Technol, Acad Fundamental & Interdisciplinary Sci, Harbin 150080, Peoples R China
[4] Russian Acad Sci, Rzhanov Inst Semicond Phys, Siberian Branch, Lavrentjeva 13, Novosibirsk 630090, Russia
来源
INTERNATIONAL JOURNAL OF ELECTROCHEMICAL SCIENCE | 2023年 / 18卷 / 11期
基金
中国国家自然科学基金;
关键词
First-principles calculations; Doping; Electronic structure; Ion diffusion; Li2FeSiO4; ELECTROCHEMICAL PERFORMANCE; CATHODE MATERIALS; STABILITY; MN; FE; NI; CO; LI2MNSIO4;
D O I
10.1016/j.ijoes.2023.100342
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
As a typical orthosilicate material, Li2FeSiO4 has become a potential candidate for the cathode materials of nextgeneration advanced lithium-ion batteries. However, low electronic/ionic conductivity and slow diffusion rate of lithium ions limit its practical application in the field of lithium-ion batteries. Element doping is an effective and simple strategy to improve the electrical and electrochemical performance of Li2FeSiO4. In this work, electronic structure and lithium ion diffusion of nitrogen doped Li2FeSiO4 were studied by first-principles calculations. The band gap of Li16Fe8Si8O31N (0.331 eV) is smaller than that of Li16Fe8Si8O30N2 (0.712 eV), which indicates a better electronic conductivity. Results of mean square displacement confirm that lithium ion could diffuse in twodimensional path in Li2FeSiO4 along the a-axis and c-axis. Additionally, nitrogen doping reduces the energy barrier and improves the diffusion of lithium ions. Diffusion coefficient of lithium ion and the ionic conductivity is 4 and 5 orders of magnitude larger than that of intrinsic system, respectively.
引用
收藏
页数:6
相关论文
共 50 条
  • [41] Freeze-drying Synthesis and Characterization of Li2FeSiO4/C Cathode Materials for Lithium Ion Batteries
    Zhang Dong
    Li Haoming
    Qiu Hailong
    Chen Gang
    Yue Huijuan
    Liu Anhua
    CHEMICAL JOURNAL OF CHINESE UNIVERSITIES-CHINESE, 2017, 38 (08): : 1436 - 1441
  • [42] Preparation of Li2FeSiO4 Cathode Material for Lithium-Ion Batteries by a Microemulsion Method
    Zhao Qing
    Deng Kunfa
    Pang Xiufen
    Yang Rong
    Lu Leilei
    RARE METAL MATERIALS AND ENGINEERING, 2015, 44 (12) : 3065 - 3068
  • [43] Li2FeSiO4/C aerogel: A promising nanostructured cathode material for lithium-ion battery applications
    Muniyandi, T. Muthu
    Balamurugan, S.
    Naresh, N.
    Prakash, I
    Venkatesh, R.
    Deshpande, Uday
    Satyanarayana, N.
    JOURNAL OF ALLOYS AND COMPOUNDS, 2021, 887
  • [44] Design of Li2FeSiO4 cathode material for enhanced lithium-ion storage performance
    Qiu, Hailong
    Jin, Di
    Wang, Chunzhong
    Chen, Gang
    Wang, Lei
    Yue, Huijuan
    Zhang, Dong
    CHEMICAL ENGINEERING JOURNAL, 2020, 379
  • [45] Tartaric acid assisted synthesis of Li2FeSiO4/C; Effect of carbon content on the electrochemical performance of Li2FeSiO4/C for lithium ion batteries
    Gao, Haili
    Wang, Lizhen
    Zhang, Yong
    Zhang, Aiqin
    Song, Yanhua
    POWDER TECHNOLOGY, 2014, 253 : 638 - 643
  • [46] Supercritical hydrothermal synthesis of rod like Li2FeSiO4 particles for cathode application in lithium ion batteries
    Devaraju, M. K.
    Tomai, Takaaki
    Honma, Itaru
    ELECTROCHIMICA ACTA, 2013, 109 : 75 - 81
  • [47] Li2FeSiO4/C with good performance as cathode material for Li-ion battery
    Qu, Long
    Fang, Shaohua
    Zhang, Zhengxi
    Yang, Li
    Hirano, Shin-ichi
    MATERIALS LETTERS, 2013, 108 : 1 - 4
  • [48] Diffusion Mechanism of Polaron-Li Vacancy Complex in Cathode Material Li2FeSiO4
    Kieu My Bui
    Van An Dinh
    Ohno, Takahisa
    APPLIED PHYSICS EXPRESS, 2012, 5 (12)
  • [49] First-principles study of heterostructures of MXene and nitrogen-doped graphene as anode materials for Li-ion batteries
    Li, Rui
    Zhao, Peng
    Qin, Xiaoqian
    Li, Haibo
    Qu, Konggang
    Jiang, De-en
    SURFACES AND INTERFACES, 2020, 21
  • [50] Electronic structure and optical properties of nitrogen-doped antimonene under biaxial strain: first-principles study
    Wei, Ran
    Liu, Guili
    Qian, Shaoran
    Su, Dan
    Zhang, Guoying
    JOURNAL OF MOLECULAR MODELING, 2024, 30 (05)