Supercongruences concerning lacunary sums of Catalan numbers and binomial coefficients

被引:0
|
作者
Zhang, Yong [1 ]
Pan, Hao [2 ]
机构
[1] Nanjing Inst Technol, Dept Math & Phys, Nanjing 211167, Peoples R China
[2] Nanjing Univ Finance & Econ, Sch Appl Math, Nanjing 210046, Peoples R China
来源
PUBLICATIONES MATHEMATICAE DEBRECEN | 2023年 / 103卷 / 1-2期
基金
中国国家自然科学基金;
关键词
supercongruences; binomial coefficients; Catalan numbers; Lucas sequences; CONGRUENCES; ATKIN;
D O I
10.5486/PMD.2023.9362
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We consider two conjectures of Sun in [22] concerning lacunary sums of Catalan numbers and binomial coefficients. As a conclusion, we completely confirm one of Sun's conjecture and partially confirm the other one. For example, suppose that p >= 3 is prime and 0 <= r <= p - 1. Then, for any a >= 0, we have S-r(p(a+2)) = S-r(p(a)) (mod p(1+a)), where S-r(p(a)) = Sigma(0<k<pa) (k equivalent to r (mod p-1)) C-k, and C-k = ((k) (2k))/(k + 1) is the k-th Catalan number. Furthermore, when p = 2, we have S-r(2(a+2)) = S-r(2(a)) (mod 2(2(1+a))).
引用
收藏
页码:41 / 78
页数:38
相关论文
共 50 条