The Big Bang of Deep Learning in Ultrasound-Guided Surgery: A Review

被引:8
|
作者
Masoumi, Nima [1 ]
Rivaz, Hassan [1 ]
Hacihaliloglu, Ilker [2 ]
Ahmad, M. Omair [1 ]
Reinertsen, Ingerid [3 ]
Xiao, Yiming [4 ]
机构
[1] Concordia Univ, Dept Elect & Comp Engn, Montreal, PQ H3G 1M8, Canada
[2] Univ British Columbia, Dept Radiol, Dept Med, Vancouver, BC V6T 1Z4, Canada
[3] SINITEF Digital, Dept Hlth Res, N-7465 Trondheim, Norway
[4] Concordia Univ, Dept Comp Sci & Software Engn, Montreal, PQ H3G 1M8, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
Three-dimensional displays; Catheters; Heart; Brachytherapy; Location awareness; Image segmentation; Ultrasonic imaging; Deep learning (DL); intervention; percutaneous; surgical guidance; ultrasound (US); 3D ULTRASOUND; PROSTATE SEGMENTATION; REGISTRATION; MR; ALGORITHM; DATABASE; IMAGES;
D O I
10.1109/TUFFC.2023.3255843
中图分类号
O42 [声学];
学科分类号
070206 ; 082403 ;
摘要
Ultrasound (US) imaging is a paramount modality in many image-guided surgeries and percutaneous interventions, thanks to its high portability, temporal resolution, and cost-efficiency. However, due to its imaging principles, the US is often noisy and difficult to interpret. Appropriate image processing can greatly enhance the applicability of the imaging modality in clinical practice. Compared with the classic iterative optimization and machine learning (ML) approach, deep learning (DL) algorithms have shown great performance in terms of accuracy and efficiency for US processing. In this work, we conduct a comprehensive review on deep-learning algorithms in the applications of US-guided interventions, summarize the current trends, and suggest future directions on the topic.
引用
收藏
页码:909 / 919
页数:11
相关论文
共 50 条
  • [31] Ultrasound-guided interventional radiology in critical care
    Nicolaou, Savvas
    Talsky, Aaron
    Khashoggi, Khalid
    Venu, Vicnays
    CRITICAL CARE MEDICINE, 2007, 35 (05) : S186 - S197
  • [32] The use of video glasses at ultrasound-guided interventions
    Pedersen, JF
    Vedsted-Jacobsen, A
    Andresen, N
    ACTA RADIOLOGICA, 2002, 43 (05) : 539 - 540
  • [33] Urinary tract obstruction: Ultrasound-guided intervention
    Lory, Alexander
    Stubbs, Christopher
    Wolstenhulme, Stephen
    Khan, Atif
    ULTRASOUND, 2022, 30 (04) : 264 - 272
  • [34] Ultrasound-guided joint and soft tissue interventions
    Kowalska, Berta
    JOURNAL OF ULTRASONOGRAPHY, 2014, 14 (57) : 163 - 170
  • [35] Ultrasound-guided interventional procedures of the wrist and hand
    Teh, James
    Vlychou, Marianna
    EUROPEAN RADIOLOGY, 2009, 19 (04) : 1002 - 1010
  • [36] Ultrasound-guided proximal paravertebral anaesthesia in cattle
    Kramer, Anne H.
    Doherr, Marcus G.
    Stoffel, Michael H.
    Steiner, Adrian
    Spadavecchia, Claudia
    VETERINARY ANAESTHESIA AND ANALGESIA, 2014, 41 (05) : 534 - 542
  • [37] Automatic Segmentation of Abdominal Aortic Aneurysms From Time-Resolved 3-D Ultrasound Images Using Deep Learning
    Maas, Esther J.
    Awasthi, Navchetan
    van Pelt, Esther G.
    van Sambeek, Marc R. H. M.
    Lopata, Richard G. P.
    IEEE TRANSACTIONS ON ULTRASONICS FERROELECTRICS AND FREQUENCY CONTROL, 2024, 71 (11) : 1420 - 1428
  • [38] Robot for Ultrasound-Guided Prostate Imaging and Intervention
    Kim, Chunwoo
    Schaefer, Felix
    Chang, Doyoung
    Petrisor, Doru
    Han, Misop
    Stoianovici, Dan
    2011 IEEE/RSJ INTERNATIONAL CONFERENCE ON INTELLIGENT ROBOTS AND SYSTEMS, 2011, : 943 - 948
  • [39] Ultrasound-guided Percutaneous Achilles Tendon Repair
    Mazek, Jacek
    Gnatowski, Maciej
    Porthos Salas, Antonio
    Domzalski, Marcin
    Mazek, Mateusz
    TECHNIQUES IN FOOT AND ANKLE SURGERY, 2024, 23 (01): : 21 - 26
  • [40] Advancements in Deep Learning for B-Mode Ultrasound Segmentation: A Comprehensive Review
    Ansari, Mohammed Yusuf
    Mangalote, Iffa Afsa Changaai
    Meher, Pramod Kumar
    Aboumarzouk, Omar
    Al-Ansari, Abdulla
    Halabi, Osama
    Dakua, Sarada Prasad
    IEEE TRANSACTIONS ON EMERGING TOPICS IN COMPUTATIONAL INTELLIGENCE, 2024, 8 (03): : 2126 - 2149