The principal eigenvalue for partially degenerate and periodic reaction-diffusion systems with time delay

被引:8
|
作者
Huang, Mingdi [1 ,2 ]
Wu, Shi-Liang [1 ]
Zhao, Xiao-Qiang [2 ]
机构
[1] Xidian Univ, Sch Math & Stat, Xian 710071, Shaanxi, Peoples R China
[2] Mem Univ Newfoundland, Dept Math & Stat, St John, NF A1C 5S7, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
Principal eigenvalue; Basic reproduction ratio; Partially degenerate systems; Time periodicity and delay; Global dynamics AMS subjective; NONLOCAL DISPERSAL; REPRODUCTION NUMBER; GLOBAL DYNAMICS; LYME-DISEASE; MODEL; TRANSMISSION; THRESHOLD; EQUATIONS; SPREAD;
D O I
10.1016/j.jde.2023.06.024
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we first establish the theory of principal eigenvalues for a large class of partially degenerate, linear and periodic parabolic cooperative systems with time delay. Then we apply these theoretical results to study the global dynamics of a blacklegged tick Ixodes scapularis population model. To present a thresholdtype result in terms of basic reproduction ratio R0 for such a model, we also extend the earlier theory of R0 to abstract functional differential equations with time-delayed internal transition.& COPY; 2023 Elsevier Inc. All rights reserved.
引用
收藏
页码:396 / 449
页数:54
相关论文
共 50 条
  • [41] SPATIAL DYNAMICS OF A NONLOCAL REACTION-DIFFUSION EPIDEMIC MODEL IN TIME-SPACE PERIODIC HABITAT
    Xin, Ming-Zhen
    Wang, Bin-Guo
    COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, 2023, 22 (08) : 2430 - 2465
  • [42] Long time behavior for a periodic Lotka-Volterra reaction-diffusion system with strong competition
    Pang, Liyan
    Wu, Shi-Liang
    Ruan, Shigui
    CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2023, 62 (03)
  • [43] A reaction-diffusion SIS epidemic model in an almost periodic environment
    Wang, Bin-Guo
    Li, Wan-Tong
    Wang, Zhi-Cheng
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2015, 66 (06): : 3085 - 3108
  • [44] Stability Analysis and Hopf Bifurcation for the Brusselator Reaction-Diffusion System with Gene Expression Time Delay
    Alfifi, Hassan Y.
    Almuaddi, Saad M.
    MATHEMATICS, 2024, 12 (08)
  • [45] GLOBAL STABILITY OF TRAVELING WAVES FOR DELAY REACTION-DIFFUSION SYSTEMS WITHOUT QUASI-MONOTONICITY
    Su, Si
    Zhang, Guo-Bao
    ELECTRONIC JOURNAL OF DIFFERENTIAL EQUATIONS, 2020,
  • [46] A selection criterion for patterns in reaction-diffusion systems
    Marquez-Lago, Tatiana T.
    Padilla, Pablo
    THEORETICAL BIOLOGY AND MEDICAL MODELLING, 2014, 11
  • [47] Propagation dynamics for a time-periodic reaction-diffusion SI epidemic model with periodic recruitment
    Zhao, Lin
    Wang, Zhi-Cheng
    Zhang, Liang
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2021, 72 (04):
  • [48] Linear stability of delayed reaction-diffusion systems
    Hinow, Peter
    Mincheva, Maya
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2017, 73 (02) : 226 - 232
  • [49] Complex-order fractional diffusion in reaction-diffusion systems
    Bueno-Orovio, Alfonso
    Burrage, Kevin
    COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2023, 119
  • [50] A waiting time phenomenon for modulations of pattern in reaction-diffusion systems
    Duell, Wolf-Patrick
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2012, 63 (01): : 1 - 23