The principal eigenvalue for partially degenerate and periodic reaction-diffusion systems with time delay

被引:8
|
作者
Huang, Mingdi [1 ,2 ]
Wu, Shi-Liang [1 ]
Zhao, Xiao-Qiang [2 ]
机构
[1] Xidian Univ, Sch Math & Stat, Xian 710071, Shaanxi, Peoples R China
[2] Mem Univ Newfoundland, Dept Math & Stat, St John, NF A1C 5S7, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
Principal eigenvalue; Basic reproduction ratio; Partially degenerate systems; Time periodicity and delay; Global dynamics AMS subjective; NONLOCAL DISPERSAL; REPRODUCTION NUMBER; GLOBAL DYNAMICS; LYME-DISEASE; MODEL; TRANSMISSION; THRESHOLD; EQUATIONS; SPREAD;
D O I
10.1016/j.jde.2023.06.024
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we first establish the theory of principal eigenvalues for a large class of partially degenerate, linear and periodic parabolic cooperative systems with time delay. Then we apply these theoretical results to study the global dynamics of a blacklegged tick Ixodes scapularis population model. To present a thresholdtype result in terms of basic reproduction ratio R0 for such a model, we also extend the earlier theory of R0 to abstract functional differential equations with time-delayed internal transition.& COPY; 2023 Elsevier Inc. All rights reserved.
引用
收藏
页码:396 / 449
页数:54
相关论文
共 50 条
  • [31] A time-periodic reaction-diffusion epidemic model with infection period
    Zhang, Liang
    Wang, Zhi-Cheng
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2016, 67 (05):
  • [32] Periodic measures of reaction-diffusion lattice systems driven by superlinear noise
    Lin, Yusen
    ELECTRONIC RESEARCH ARCHIVE, 2022, 30 (01): : 35 - 51
  • [33] An inverse problem for nonlocal reaction-diffusion equations with time-delay
    Yang, Lin
    Xu, Dinghua
    APPLICABLE ANALYSIS, 2024, 103 (16) : 3067 - 3085
  • [34] Global Asymptotic Stability in a Class of Reaction-Diffusion Equations with Time Delay
    Yuan, Yueding
    Guo, Zhiming
    ABSTRACT AND APPLIED ANALYSIS, 2014,
  • [35] A reaction-diffusion SIS epidemic model in a time-periodic environment
    Peng, Rui
    Zhao, Xiao-Qiang
    NONLINEARITY, 2012, 25 (05) : 1451 - 1471
  • [36] PRINCIPAL SPECTRAL THEORY OF TIME-PERIODIC NONLOCALDISPERSAL COOPERATIVE SYSTEMS AND APPLICATIONS
    Feng, Yan-Xia
    Li, Wan-Tong
    Ruan, Shigui
    Xin, Ming-Zhen
    SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2024, 56 (03) : 4040 - 4083
  • [37] Global dynamics of a reaction-diffusion brucellosis model with spatiotemporal heterogeneity and nonlocal delay
    Liu, Shu-Min
    Bai, Zhenguo
    Sun, Gui-Quan
    NONLINEARITY, 2023, 36 (11) : 5699 - 5730
  • [38] Preserving invariance properties of reaction-diffusion systems on stationary surfaces
    Frittelli, Massimo
    Madzvamuse, Anotida
    Sgura, Ivonne
    Venkataraman, Chandrasekhar
    IMA JOURNAL OF NUMERICAL ANALYSIS, 2019, 39 (01) : 235 - 270
  • [39] Principal spectral theory and asymptotic behavior of the spectral bound for partially degenerate nonlocal dispersal systems
    Zhang, Lei
    ADVANCED NONLINEAR STUDIES, 2024, 24 (04) : 1012 - 1041
  • [40] Time periodic traveling wave solutions of a time-periodic reaction-diffusion SEIR epidemic model with periodic recruitment
    Zhao, Lin
    Liu, Yini
    NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2025, 81