INEQUALITIES FOR THE WEIGHTED A-NUMERICAL RADIUS OF SEMI-HILBERTIAN SPACE OPERATORS

被引:1
作者
Gao, Fugen
Liu, Xianqin
机构
来源
OPERATORS AND MATRICES | 2023年 / 17卷 / 02期
关键词
Weighted A-numerical radius; positive operator; semi-Hilbertian space; in-equality;
D O I
10.7153/oam-2023-17-24
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we introduce the weighted A-numerical radius. omega((A,V))(center dot) for semi-Hilbertian space operators. Further we obtain some basic properties and inequalities for. omega((A,V))(center dot), which will be matched with earlier results about. omega(A)(center dot). Moreover, we provide a refinement and generalization for inequalities obtained in [6, 16].
引用
收藏
页码:343 / 354
页数:2
相关论文
共 18 条
[1]   A novel numerical radius upper bounds for 2 x 2 operator matrices [J].
Al-Dolat, Mohammed ;
Jaradat, Imad ;
Al-Husban, Baraa .
LINEAR & MULTILINEAR ALGEBRA, 2022, 70 (06) :1173-1184
[2]   Numerical Radius Inequalities for Hilbert Space Operators [J].
Alomari, Mohammad W. .
COMPLEX ANALYSIS AND OPERATOR THEORY, 2021, 15 (07)
[3]   Refined and generalized numerical radius inequalities for 2 x 2 operator matrices [J].
Bani-Domi, Watheq ;
Kittaneh, Fuad .
LINEAR ALGEBRA AND ITS APPLICATIONS, 2021, 624 (624) :364-386
[4]   Norm and numerical radius inequalities for Hilbert space operators [J].
Bani-Domi, Watheq ;
Kittaneh, Fuad .
LINEAR & MULTILINEAR ALGEBRA, 2021, 69 (05) :934-945
[5]  
Bhunia P, 2020, ELECTRON J LINEAR AL, V36
[6]  
Bhunia P, 2021, B IRAN MATH SOC, V47, P435, DOI 10.1007/s41980-020-00392-8
[7]   On A-numerical radius inequalities for 2 x 2 operator matrices [J].
Chandra Rout, Nirmal ;
Sahoo, Satyajit ;
Mishra, Debasisha .
LINEAR & MULTILINEAR ALGEBRA, 2022, 70 (14) :2672-2692
[9]   A note on the A-numerical radius of operators in semi-Hilbert spaces [J].
Feki, Kais .
ARCHIV DER MATHEMATIK, 2020, 115 (05) :535-544
[10]   Numerical Radius Inequalities for Certain 2 x 2 Operator Matrices [J].
Hirzallah, Omar ;
Kittaneh, Fuad ;
Shebrawi, Khalid .
INTEGRAL EQUATIONS AND OPERATOR THEORY, 2011, 71 (01) :129-147