MCnebula: Critical Chemical Classes for the Classification and Boost Identification by Visualization for Untargeted LC-MS/MS Data Analysis

被引:5
作者
Huang, Lichuang [1 ,2 ]
Shan, Qiyuan [1 ,2 ]
Lyu, Qiang [1 ]
Zhang, Shuosheng [3 ]
Wang, Lu [1 ,2 ]
Cao, Gang [1 ,2 ,4 ]
机构
[1] Zhejiang Chinese Med Univ, Sch Pharm, Hangzhou 310053, Peoples R China
[2] Zhejiang Chinese Med Univ, Jinhua Inst, Hangzhou 310053, Peoples R China
[3] Shanxi Univ Chinese Med, Coll Chinese Mat Med & Food Engn, Jinzhong 030600, Peoples R China
[4] Zhejiang Chinese Med Univ, Affiliated Hosp 3, Hangzhou 310009, Peoples R China
基金
中国国家自然科学基金;
关键词
MASS-SPECTROMETRY DATA; METABOLOMICS DATA; LYSOPHOSPHATIDYLCHOLINE; ANNOTATION; MORTALITY; PLATFORM;
D O I
10.1021/acs.analchem.3c01072
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
Untargeted mass spectrometry is a robust tool for biology,butit usually requires a large amount of time on data analysis, especiallyfor system biology. A framework called Multiple-Chemical nebula (MCnebula)was developed herein to facilitate the LC-MS data analysisprocess by focusing on critical chemical classes and visualizationin multiple dimensions. This framework consists of three vital stepsas follows: (1) abundance-based classes (ABC) selection algorithm,(2) critical chemical classes to classify "features"(corresponding to compounds), and (3) visualization as multiple Child-Nebulae(network graph) with annotation, chemical classification, and structure.Notably, MCnebula can be used to explore the classification and structuralcharacteristic of unknown compounds beyond the limit of the spectrallibrary. Moreover, it is intuitive and convenient for pathway analysisand biomarker discovery because of its function of ABC selection andvisualization. MCnebula was implemented in the R language. A seriesof tools in R packages were provided to facilitate downstream analysisin an MCnebula-featured way, including feature selection, homologytracing of top features, pathway enrichment analysis, heat map clusteringanalysis, spectral visualization analysis, chemical information query,and output analysis reports. The broad utility of MCnebula was illustratedby a human-derived serum data set for metabolomics analysis. The resultsindicated that "Acyl carnitines" were screened out bytracing structural classes of biomarkers, which was consistent withthe reference. A plant-derived data set was investigated to achievea rapid annotation and discovery of compounds in E. ulmoides.
引用
收藏
页码:9940 / 9948
页数:9
相关论文
共 41 条
[1]   Competitive fragmentation modeling of ESI-MS/MS spectra for putative metabolite identification [J].
Allen, Felicity ;
Greiner, Russ ;
Wishart, David .
METABOLOMICS, 2015, 11 (01) :98-110
[2]   Structure Annotation of All Mass Spectra in Untargeted Metabolomics [J].
Blazenovic, Ivana ;
Kind, Tobias ;
Sa, Michael R. ;
Ji, Jian ;
Vaniya, Arpana ;
Wancewicz, Benjamin ;
Roberts, Bryan S. ;
Torbasinovic, Hrvoje ;
Lee, Tack ;
Mehta, Sajjan S. ;
Showalter, Megan R. ;
Song, Hosook ;
Kwok, Jessica ;
Jahn, Dieter ;
Kim, Jayoung ;
Fiehn, Oliver .
ANALYTICAL CHEMISTRY, 2019, 91 (03) :2155-2162
[3]   Comprehensive comparison of in silico MS/MS fragmentation tools of the CASMI contest: database boosting is needed to achieve 93% accuracy [J].
Blazenovic, Ivana ;
Kind, Tobias ;
Torbasinovic, Hrvoje ;
Obrenovic, Slobodan ;
Mehta, Sajjan S. ;
Tsugawa, Hiroshi ;
Wermuth, Tobias ;
Schauer, Nicolas ;
Jahn, Martina ;
Biedendieck, Rebekka ;
Jahn, Dieter ;
Fiehn, Oliver .
JOURNAL OF CHEMINFORMATICS, 2017, 9
[4]   SIRIUS: decomposing isotope patterns for metabolite identification [J].
Boecker, Sebastian ;
Letzel, Matthias C. ;
Liptak, Zsuzsanna ;
Pervukhin, Anton .
BIOINFORMATICS, 2009, 25 (02) :218-224
[5]   A cross-platform toolkit for mass spectrometry and proteomics [J].
Chambers, Matthew C. ;
Maclean, Brendan ;
Burke, Robert ;
Amodei, Dario ;
Ruderman, Daniel L. ;
Neumann, Steffen ;
Gatto, Laurent ;
Fischer, Bernd ;
Pratt, Brian ;
Egertson, Jarrett ;
Hoff, Katherine ;
Kessner, Darren ;
Tasman, Natalie ;
Shulman, Nicholas ;
Frewen, Barbara ;
Baker, Tahmina A. ;
Brusniak, Mi-Youn ;
Paulse, Christopher ;
Creasy, David ;
Flashner, Lisa ;
Kani, Kian ;
Moulding, Chris ;
Seymour, Sean L. ;
Nuwaysir, Lydia M. ;
Lefebvre, Brent ;
Kuhlmann, Frank ;
Roark, Joe ;
Rainer, Paape ;
Detlev, Suckau ;
Hemenway, Tina ;
Huhmer, Andreas ;
Langridge, James ;
Connolly, Brian ;
Chadick, Trey ;
Holly, Krisztina ;
Eckels, Josh ;
Deutsch, Eric W. ;
Moritz, Robert L. ;
Katz, Jonathan E. ;
Agus, David B. ;
MacCoss, Michael ;
Tabb, David L. ;
Mallick, Parag .
NATURE BIOTECHNOLOGY, 2012, 30 (10) :918-920
[6]   Classification-based strategies to simplify complex traditional Chinese medicine (TCM) researches through liquid chromatography-mass spectrometry in the last decade (2011-2020): Theory, technical route and difficulty [J].
Chen, Yue-Hua ;
Bi, Jing-Hua ;
Xie, Ming ;
Zhang, Hui ;
Shi, Zi-Qi ;
Guo, Hua ;
Yin, Hai-Bo ;
Zhang, Jia-Nuo ;
Xin, Gui-Zhong ;
Song, Hui-Peng .
JOURNAL OF CHROMATOGRAPHY A, 2021, 1651
[7]   MetaboAnalyst 4.0: towards more transparent and integrative metabolomics analysis [J].
Chong, Jasmine ;
Soufan, Othman ;
Li, Carin ;
Caraus, Iurie ;
Li, Shuzhao ;
Bourque, Guillaume ;
Wishart, David S. ;
Xia, Jianguo .
NUCLEIC ACIDS RESEARCH, 2018, 46 (W1) :W486-W494
[8]   Evaluation of variable selection methods for random forests and omics data sets [J].
Degenhardt, Frauke ;
Seifert, Stephan ;
Szymczak, Silke .
BRIEFINGS IN BIOINFORMATICS, 2019, 20 (02) :492-503
[9]  
Djoumbou Feunang Yannick, 2016, J Cheminform, V8, P61
[10]   Plasma ceramide and lysophosphatidylcholine inversely correlate with mortality in sepsis patients [J].
Drobnik, W ;
Liebisch, G ;
Audebert, FX ;
Fröhlich, D ;
Glück, T ;
Vogel, P ;
Rothe, G ;
Schmitz, G .
JOURNAL OF LIPID RESEARCH, 2003, 44 (04) :754-761