Deep learning can yield clinically useful right ventricular segmentations faster than fully manual analysis

被引:4
作者
Akesson, Julius [1 ,2 ]
Ostenfeld, Ellen [1 ]
Carlsson, Marcus [1 ]
Arheden, Hakan [1 ]
Heiberg, Einar [1 ]
机构
[1] Lund Univ, Skane Univ Hosp, Dept Clin Sci Lund, Clin Physiol, Lund, Sweden
[2] Lund Univ, Fac Engn, Dept Biomed Engn, Lund, Sweden
基金
瑞典研究理事会;
关键词
MAGNETIC-RESONANCE; CARDIAC MRI;
D O I
10.1038/s41598-023-28348-y
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Right ventricular (RV) volumes are commonly obtained through time-consuming manual delineations of cardiac magnetic resonance (CMR) images. Deep learning-based methods can generate RV delineations, but few studies have assessed their ability to accelerate clinical practice. Therefore, we aimed to develop a clinical pipeline for deep learning-based RV delineations and validate its ability to reduce the manual delineation time. Quality-controlled delineations in short-axis CMR scans from 1114 subjects were used for development. Time reduction was assessed by two observers using 50 additional clinical scans. Automated delineations were subjectively rated as (A) sufficient for clinical use, or as needing (B) minor or (C) major corrections. Times were measured for manual corrections of delineations rated as B or C, and for fully manual delineations on all 50 scans. Fifty-eight % of automated delineations were rated as A, 42% as B, and none as C. The average time was 6 min for a fully manual delineation, 2 s for an automated delineation, and 2 min for a minor correction, yielding a time reduction of 87%. The deep learning-based pipeline could substantially reduce the time needed to manually obtain clinically applicable delineations, indicating ability to yield right ventricular assessments faster than fully manual analysis in clinical practice. However, these results may not generalize to clinics using other RV delineation guidelines.
引用
收藏
页数:10
相关论文
共 33 条
[1]   Effect of intravenous TRO40303 as an adjunct to primary percutaneous coronary intervention for acute ST-elevation myocardial infarction: MITOCARE study results [J].
Atar, Dan ;
Arheden, Hakan ;
Berdeaux, Alain ;
Bonnet, Jean-Louis ;
Carlsson, Marcus ;
Clemmensen, Peter ;
Cuvier, Valerie ;
Danchin, Nicolas ;
Dubois-Rande, Jean-Luc ;
Engblom, Henrik ;
Erlinge, David ;
Firat, Hueseyin ;
Halvorsen, Sigrun ;
Hansen, Henrik Steen ;
Hauke, Wilfried ;
Heiberg, Einar ;
Koul, Sasha ;
Larsen, Alf-Inge ;
Le Corvoisier, Philippe ;
Nordrehaug, Jan Erik ;
Paganelli, Franck ;
Pruss, Rebecca M. ;
Rousseau, Helene ;
Schaller, Sophie ;
Sonou, Giles ;
Tuseth, Vegard ;
Veys, Julien ;
Vicaut, Eric ;
Jensen, Svend Eggert .
EUROPEAN HEART JOURNAL, 2015, 36 (02) :112-119
[2]   Fully automated quantification of biventricular volumes and function in cardiovascular magnetic resonance: applicability to clinical routine settings [J].
Backhaus, Soeren J. ;
Staab, Wieland ;
Steinmetz, Michael ;
Ritter, Christian O. ;
Lotz, Joachim ;
Hasenfuss, Gerd ;
Schuster, Andreas ;
Kowallick, Johannes T. .
JOURNAL OF CARDIOVASCULAR MAGNETIC RESONANCE, 2019, 21 (1)
[3]   Automated cardiovascular magnetic resonance image analysis with fully convolutional networks [J].
Bai, Wenjia ;
Sinclair, Matthew ;
Tarroni, Giacomo ;
Oktay, Ozan ;
Rajchl, Martin ;
Vaillant, Ghislain ;
Lee, Aaron M. ;
Aung, Nay ;
Lukaschuk, Elena ;
Sanghvi, Mihir M. ;
Zemrak, Filip ;
Fung, Kenneth ;
Paiva, Jose Miguel ;
Carapella, Valentina ;
Kim, Young Jin ;
Suzuki, Hideaki ;
Kainz, Bernhard ;
Matthews, Paul M. ;
Petersen, Steffen E. ;
Piechnik, Stefan K. ;
Neubauer, Stefan ;
Glocker, Ben ;
Rueckert, Daniel .
JOURNAL OF CARDIOVASCULAR MAGNETIC RESONANCE, 2018, 20
[4]  
Bell Daniel., 2020, Dice similarity coefficient, DOI [DOI 10.53347/RID-75056, 10.53347/rid-75056]
[5]  
Berggren K, 2020, P SSBA
[6]   Deep Learning Techniques for Automatic MRI Cardiac Multi-Structures Segmentation and Diagnosis: Is the Problem Solved? [J].
Bernard, Olivier ;
Lalande, Alain ;
Zotti, Clement ;
Cervenansky, Frederick ;
Yang, Xin ;
Heng, Pheng-Ann ;
Cetin, Irem ;
Lekadir, Karim ;
Camara, Oscar ;
Gonzalez Ballester, Miguel Angel ;
Sanroma, Gerard ;
Napel, Sandy ;
Petersen, Steffen ;
Tziritas, Georgios ;
Grinias, Elias ;
Khened, Mahendra ;
Kollerathu, Varghese Alex ;
Krishnamurthi, Ganapathy ;
Rohe, Marc-Michel ;
Pennec, Xavier ;
Sermesant, Maxime ;
Isensee, Fabian ;
Jaeger, Paul ;
Maier-Hein, Klaus H. ;
Full, Peter M. ;
Wolf, Ivo ;
Engelhardt, Sandy ;
Baumgartner, Christian F. ;
Koch, Lisa M. ;
Wolterink, Jelmer M. ;
Isgum, Ivana ;
Jang, Yeonggul ;
Hong, Yoonmi ;
Patravali, Jay ;
Jain, Shubham ;
Humbert, Olivier ;
Jodoin, Pierre-Marc .
IEEE TRANSACTIONS ON MEDICAL IMAGING, 2018, 37 (11) :2514-2525
[7]   STATISTICAL METHODS FOR ASSESSING AGREEMENT BETWEEN TWO METHODS OF CLINICAL MEASUREMENT [J].
BLAND, JM ;
ALTMAN, DG .
LANCET, 1986, 1 (8476) :307-310
[8]   Right Ventricle Segmentation in Cardiac MR Images Using U-Net with Partly Dilated Convolution [J].
Borodin, Gregory ;
Senyukova, Olga .
ARTIFICIAL NEURAL NETWORKS AND MACHINE LEARNING - ICANN 2018, PT II, 2018, 11140 :179-185
[9]   AdaEn-Net: An ensemble of adaptive 2D-3D Fully Convolutional Networks for medical image segmentation [J].
Calisto, Maria Baldeon ;
Lai-Yuen, Susana K. .
NEURAL NETWORKS, 2020, 126 :76-94
[10]   Diagnostic accuracy and variability of three semi-quantitative methods for assessing right ventricular systolic function from cardiac MRI in patients with acquired heart disease [J].
Caudron, Jerome ;
Fares, Jeannette ;
Vivier, Pierre-Hugues ;
Lefebvre, Valentin ;
Petitjean, Caroline ;
Dacher, Jean-Nicolas .
EUROPEAN RADIOLOGY, 2011, 21 (10) :2111-2120