Bezier surfaces with prescribed diagonals

被引:3
|
作者
Arnal, A. [1 ]
Monterde, J.
机构
[1] Univ Jaume 1, Dep Matemat, Castellon de La Plana, Spain
关键词
Tensor product B?zier surface; Diagonal curve; B?zier patch; Boundary curve; Geometric modeling;
D O I
10.1016/j.cam.2022.115018
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The affine space of all tensor product Bezier patches of degree n x n with prescribed main diagonal curves is determined. First, the pair of Bezier curves which can be diagonals of a Bezier patch is characterized. Besides prescribing the diagonal curves, other related problems are considered, those where boundary curves or tangent planes along boundary curves are also prescribed.(c) 2022 Published by Elsevier B.V.
引用
收藏
页数:13
相关论文
共 50 条
  • [1] CONSTRUCTION OF BEZIER SURFACES FROM PRESCRIBED BOUNDARY
    Hao, Yongxia
    Li, Ting
    JOURNAL OF COMPUTATIONAL MATHEMATICS, 2023, 41 (04): : 507 - 508
  • [2] LATIN SQUARES WITH PRESCRIBED DIAGONALS
    HILTON, AJW
    RODGER, CA
    CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 1982, 34 (06): : 1251 - 1254
  • [3] Tensor product Bezier surfaces on triangle Bezier surfaces
    Lasser, D
    COMPUTER AIDED GEOMETRIC DESIGN, 2002, 19 (08) : 625 - 643
  • [4] On completing partial Latin squares with prescribed diagonals
    Andersen, Lars Dovling
    Baumann, Stacie
    Hilton, Anthony J. W.
    Rodger, C. A.
    ELECTRONIC JOURNAL OF COMBINATORICS, 2022, 29 (03):
  • [5] Completing partial latin squares with prescribed diagonals
    Grüttmüller, M
    DISCRETE APPLIED MATHEMATICS, 2004, 138 (1-2) : 89 - 97
  • [6] Numerical methods of generating random points with prescribed distributional properties on (non)rational Bezier surfaces
    Han, K
    Franke, J
    Feng, YT
    MATHEMATICAL AND COMPUTER MODELLING, 1996, 23 (10) : 15 - 28
  • [7] Approximating rational triangular Bezier surfaces by polynomial triangular Bezier surfaces
    Xu, Hui-Xia
    Wang, Guo-Jin
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2009, 228 (01) : 287 - 295
  • [8] Bezier developable surfaces
    Fernandez-Jambrina, L.
    COMPUTER AIDED GEOMETRIC DESIGN, 2017, 55 : 15 - 28
  • [9] Bezier type surfaces
    Piscoran Laurian, Ioan
    Pop, Ovidiu T.
    Dan, Barbosu
    APPLIED MATHEMATICS & INFORMATION SCIENCES, 2013, 7 (02): : 483 - 489
  • [10] Constrained approximation of rational triangular Bezier surfaces by polynomial triangular Bezier surfaces
    Lewanowicz, Stanislaw
    Keller, Pawel
    Wozny, Pawel
    NUMERICAL ALGORITHMS, 2017, 75 (01) : 93 - 111