Leveraging Machine Learning for Gaining Neurobiological and Nosological Insights in Psychiatric Research

被引:25
作者
Chen, Ji [1 ,2 ,3 ]
Patil, Kaustubh R. [3 ,4 ]
Yeo, B. T. Thomas [5 ,6 ,7 ,8 ,9 ]
Eickhoff, Simon B. [3 ,4 ]
机构
[1] Zhejiang Univ, Dept Psychol & Behav Sci, Hangzhou, Peoples R China
[2] Zhejiang Univ, Sch Med, Dept Psychiat, Affiliated Hosp 4, Yiwu, Zhejiang, Peoples R China
[3] Res Ctr Julich, Inst Neurosci & Med Brain & Behav INM 7, Julich, Germany
[4] Heinrich Heine Univ Dusseldorf, Med Fac, Inst Syst Neurosci, Dusseldorf, Germany
[5] Natl Univ Singapore, Ctr Sleep & Cognit, Yong Loo Lin Sch Med, Singapore, Singapore
[6] Natl Univ Singapore, Ctr Translat MR Res, Yong Loo Lin Sch Med, Singapore, Singapore
[7] Natl Univ Singapore, Dept Elect & Comp Engn, Singapore, Singapore
[8] Natl Univ Singapore, Integrat Sci & Engn Programme, Singapore, Singapore
[9] Massachusetts Gen Hosp, Martinos Ctr Biomed Imaging, Charlestown, MA USA
基金
新加坡国家研究基金会; 美国国家卫生研究院; 国家重点研发计划; 英国医学研究理事会;
关键词
SCHIZOPHRENIA SUBTYPES; CO-MORBIDITY; CONNECTIVITY; HETEROGENEITY; DISORDERS; PATTERNS; MOTION; PSYCHOPATHOLOGY; IDENTIFICATION; DIMENSIONS;
D O I
10.1016/j.biopsych.2022.07.025
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
Much attention is currently devoted to developing diagnostic classifiers for mental disorders. Complementing these efforts, we highlight the potential of machine learning to gain biological insights into the psychopathology and nosology of mental disorders. Studies to this end have mainly used brain imaging data, which can be obtained noninvasively from large cohorts and have repeatedly been argued to reveal potentially intermediate phenotypes. This may become particularly relevant in light of recent efforts to identify magnetic resonance imaging???derived biomarkers that yield insight into pathophysiological processes as well as to refine the taxonomy of mental illness. In particular, the accuracy of machine learning models may be used as dependent variables to identify features relevant to pathophysiology. Moreover, such approaches may help disentangle the dimensional (within diagnosis) and often overlapping (across diagnoses) symptomatology of psychiatric illness. We also point out a multiview perspective that combines data from different sources, bridging molecular and system-level information. Finally, we summarize recent efforts toward a data-driven definition of subtypes or disease entities through unsupervised and semisupervised approaches. The latter, blending unsupervised and supervised concepts, may represent a particularly promising avenue toward dissecting heterogeneous categories. Finally, we raise several technical and conceptual aspects related to the reviewed approaches. In particular, we discuss common pitfalls pertaining to flawed input data or analytic procedures that would likely lead to unreliable outputs.
引用
收藏
页码:18 / 28
页数:11
相关论文
共 140 条
[1]   Deriving reproducible biomarkers from multi-site resting-state data: An Autism-based example [J].
Abraham, Alexandre ;
Milham, Michael P. ;
Di Martino, Adriana ;
Craddock, R. Cameron ;
Samaras, Dimitris ;
Thirion, Bertrand ;
Varoquaux, Gael .
NEUROIMAGE, 2017, 147 :736-745
[2]   Measuring strengths and weaknesses in dimensional psychiatry [J].
Alexander, Lindsay M. ;
Salum, Giovanni A. ;
Swanson, James M. ;
Milham, Michael P. .
JOURNAL OF CHILD PSYCHOLOGY AND PSYCHIATRY, 2020, 61 (01) :40-50
[3]   Subtle In-Scanner Motion Biases Automated Measurement of Brain Anatomy From In Vivo MRI [J].
Alexander-Bloch, Aaron ;
Clasen, Liv ;
Stockman, Michael ;
Ronan, Lisa ;
Lalonde, Francois ;
Giedd, Jay ;
Raznahan, Armin .
HUMAN BRAIN MAPPING, 2016, 37 (07) :2385-2397
[4]   Convergent molecular, cellular, and cortical neuroimaging signatures of major depressive disorder [J].
Anderson, Kevin M. ;
Collins, Meghan A. ;
Kong, Ru ;
Fang, Kacey ;
Li, Jingwei ;
He, Tong ;
Chekroud, Adam M. ;
Yeo, B. T. Thomas ;
Holmes, Avram J. .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2020, 117 (40) :25138-25149
[5]   Transcriptional and imaging-genetic association of cortical interneurons, brain function, and schizophrenia risk [J].
Anderson, Kevin M. ;
Collins, Meghan A. ;
Chin, Rowena ;
Ge, Tian ;
Rosenberg, Monica D. ;
Holmes, Avram J. .
NATURE COMMUNICATIONS, 2020, 11 (01)
[6]   Depressive spectrum diagnoses [J].
Angst, J ;
Sellaro, R ;
Merikangas, KR .
COMPREHENSIVE PSYCHIATRY, 2000, 41 (02) :39-47
[7]   Single subject prediction of brain disorders in neuroimaging: Promises and pitfalls [J].
Arbabshirani, Mohammad R. ;
Plis, Sergey ;
Sui, Jing ;
Calhoun, Vince D. .
NEUROIMAGE, 2017, 145 :137-165
[8]   Functional connectomics of affective and psychotic pathology [J].
Baker, Justin T. ;
Dillon, Daniel G. ;
Patrick, Lauren M. ;
Roffman, Joshua L. ;
Brady, Roscoe O., Jr. ;
Pizzagalli, Diego A. ;
Ongur, Dost ;
Holmes, Avram J. .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2019, 116 (18) :9050-9059
[9]   Neurocognitive and functional heterogeneity in depressed youth [J].
Baller, Erica B. ;
Kaczkurkin, Antonia N. ;
Sotiras, Aristeidis ;
Adebimpe, Azeez ;
Bassett, Danielle S. ;
Calkins, Monica E. ;
Chand, Ganesh B. ;
Cui, Zaixu ;
Gur, Raquel E. ;
Gur, Ruben C. ;
Linn, Kristin A. ;
Moore, Tyler M. ;
Roalf, David R. ;
Varol, Erdem ;
Wolf, Daniel H. ;
Xia, Cedric H. ;
Davatzikos, Christos ;
Satterthwaite, Theodore D. .
NEUROPSYCHOPHARMACOLOGY, 2021, 46 (04) :783-790
[10]   Automated analysis of free speech predicts psychosis onset in high-risk youths [J].
Bedi G. ;
Carrillo F. ;
Cecchi G.A. ;
Slezak D.F. ;
Sigman M. ;
Mota N.B. ;
Ribeiro S. ;
Javitt D.C. ;
Copelli M. ;
Corcoran C.M. .
npj Schizophrenia, 1 (1)