Brain Microstructural Changes in Patients with Amnestic mild Cognitive Impairment Detected by Neurite Orientation Dispersion and Density Imaging (NODDI) Combined with Machine Learning

被引:3
作者
Fu, Xiuwei [1 ]
Wang, Xiaonan [2 ]
Zhang, Yu [2 ]
Li, Tongtong [2 ]
Tan, Zixuan [3 ]
Chen, Yuanyuan [4 ]
Zhang, Xianchang [5 ]
Ni, Hongyan [6 ]
机构
[1] Tianjin Med Univ, Gen Hosp, Dept Radiol, Tianjin, Peoples R China
[2] Tianjin Med Univ, Cent Clin Inst 1, Dept Radiol, Tianjin, Peoples R China
[3] Tianjin Med Univ, Inst Med Imaging, Tianjin, Peoples R China
[4] Tianjin Univ, Inst Med Engn & Translat Med, Tianjin, Peoples R China
[5] Siemens Healthineers Ltd, MR Collaborat, Beijing, Peoples R China
[6] Tianjin First Cent Hosp, Dept Radiol, 24 Fukang Rd, Tianjin 300192, Peoples R China
关键词
Cognitive impairment; Classification algorithm; Diffusion weighted imaging; Neurite density; Orientation dispersion; ALZHEIMERS ASSOCIATION WORKGROUPS; DIAGNOSTIC GUIDELINES; NATIONAL INSTITUTE; MATTER VOLUME; METAANALYSIS; DEMENTIA; DISEASE; MRI; RECOMMENDATIONS; VERSION;
D O I
10.1007/s00062-022-01226-2
中图分类号
R74 [神经病学与精神病学];
学科分类号
摘要
Purpose This study investigated brain microstructural changes in patients with amnestic mild cognitive impairment (aMCI) by retrospectively analyzing neurite orientation dispersion and density imaging (NODDI) data with machine learning algorithms.Methods A total of 26 aMCI patients and 24 healthy controls (HC) underwent NODDI magnetic resonance imaging (MRI) examinations. The NODDI parameters including neurite density index (NDI), orientation dispersion index (ODI), and volume fraction of isotropic water molecules (Viso) were estimated. Machine learning algorithms such as K-nearest neighbor (KNN), logistic regression (LR), random forest (RF), and support vector machine (SVM) were used to evaluate the diagnostic efficacy of NODDI parameters in predicting aMCI. The differences in the NODDI parameter values between the aMCI and HC groups were analyzed using the independent sample t-test, False discovery rate (FDR) correction was used for multiple testing. After adjusting for age, sex, and educational years, partial correlation analysis was used to evaluate the relationship between NODDI parameters and clinical cognitive status of aMCI patients.Results The NDI, ODI, and Viso values of white matter (WM) and gray matter (GM) structure templates combined with the KNN, LR, RF and SVM machine learning algorithms accomplished the discrimination between aMCI and HC groups. The NDI and ODI values decreased (p value range, < 0.001-0.042) and Viso values increased (p value range, < 0.001-0.043) in the aMCI group compared to the HCs. The NDI, ODI, and Viso values of the WM and GM structure templates with significant differences were significantly correlated with mini-mental state examination (MMSE) and Montreal cognitive assessment (MoCA) scores.Conclusion NODDI combined with machine learning algorithms is a promising strategy for early diagnosis of aMCI. Moreover, NODDI parameters correlated with the clinical cognitive status of aMCI patients.
引用
收藏
页码:445 / 453
页数:9
相关论文
共 37 条
  • [1] The diagnosis of mild cognitive impairment due to Alzheimer's disease: Recommendations from the National Institute on Aging-Alzheimer's Association workgroups on diagnostic guidelines for Alzheimer's disease
    Albert, Marilyn S.
    DeKosky, Steven T.
    Dickson, Dennis
    Dubois, Bruno
    Feldman, Howard H.
    Fox, Nick C.
    Gamst, Anthony
    Holtzman, David M.
    Jagust, William J.
    Petersen, Ronald C.
    Snyder, Peter J.
    Carrillo, Maria C.
    Thies, Bill
    Phelps, Creighton H.
    [J]. ALZHEIMERS & DEMENTIA, 2011, 7 (03) : 270 - 279
  • [2] Dendritic and spinal pathology in the acoustic cortex in Alzheimer's disease: Morphological estimation in Golgi technique and electron microscopy
    Baloyannis, Stavros J.
    Manolides, Spyros L.
    Manolides, Leonidas S.
    [J]. ACTA OTO-LARYNGOLOGICA, 2011, 131 (06) : 610 - 612
  • [3] Cholinergic dysfunction, neuronal damage and axonal loss in TgCRND8 mice
    Bellucci, Arianna
    Luccarini, Flania
    Scali, Carla
    Prosperi, Costanza
    Giovannini, Maria Grazia
    Pepeu, Giancarlo
    Casamenti, Fiorella
    [J]. NEUROBIOLOGY OF DISEASE, 2006, 23 (02) : 260 - 272
  • [4] Dendritic spines provide cognitive resilience against Alzheimer's disease
    Boros, Benjamin D.
    Greathouse, Kelsey M.
    Gentry, Erik G.
    Curtis, Kendall A.
    Birchall, Elizabeth L.
    Gearing, Marla
    Herskowitz, Jeremy H.
    [J]. ANNALS OF NEUROLOGY, 2017, 82 (04) : 602 - 614
  • [5] Random forest dissimilarity based multi-view learning for Radiomics application
    Cao, Hongliu
    Bernard, Simon
    Sabourin, Robert
    Heutte, Laurent
    [J]. PATTERN RECOGNITION, 2019, 88 : 185 - 197
  • [6] Application of neurite orientation dispersion and density imaging (NODDI) to a tau pathology model of Alzheimer's disease
    Colgan, N.
    Siowa, B.
    O'Callaghan, J. M.
    Harrison, I. F.
    Wells, J. A.
    Holmes, H. E.
    Ismail, O.
    Richardson, S.
    Alexander, D. C.
    Collins, E. C.
    Fisher, E. M.
    Johnson, R.
    Schwarz, A. J.
    Ahmed, Z.
    O'Neill, M. J.
    Murray, T. K.
    Zhang, H.
    Lythgoe, M. F.
    [J]. NEUROIMAGE, 2016, 125 : 739 - 744
  • [7] Neurostructural predictors of Alzheimer's disease: A meta-analysis of VBM studies
    Ferreira, Luiz K.
    Diniz, Breno S.
    Forlenza, Orestes V.
    Busatto, Geraldo F.
    Zanetti, Marcus V.
    [J]. NEUROBIOLOGY OF AGING, 2011, 32 (10) : 1733 - 1741
  • [8] Microstructural White Matter Alterations in Mild Cognitive Impairment and Alzheimer's Disease Study Based on Neurite Orientation Dispersion and Density Imaging (NODDI)
    Fu, Xiuwei
    Shrestha, Susan
    Sun, Man
    Wu, Qiaoling
    Luo, Yuan
    Zhang, Xianchang
    Yin, Jianzhong
    Ni, Hongyan
    [J]. CLINICAL NEURORADIOLOGY, 2020, 30 (03) : 569 - 579
  • [9] NIA-AA Research Framework: Toward a biological definition of Alzheimer's disease
    Jack, Clifford R., Jr.
    Bennett, David A.
    Blennow, Kaj
    Carrillo, Maria C.
    Dunn, Billy
    Haeberlein, Samantha Budd
    Holtzman, David M.
    Jagust, William
    Jessen, Frank
    Karlawish, Jason
    Liu, Enchi
    Luis Molinuevo, Jose
    Montine, Thomas
    Phelps, Creighton
    Rankin, Katherine P.
    Rowe, Christopher C.
    Scheltens, Philip
    Siemers, Eric
    Snyder, Heather M.
    Sperling, Reisa
    Elliott, Cerise
    Masliah, Eliezer
    Ryan, Laurie
    Silverberg, Nina
    [J]. ALZHEIMERS & DEMENTIA, 2018, 14 (04) : 535 - 562
  • [10] FSL
    Jenkinson, Mark
    Beckmann, Christian F.
    Behrens, Timothy Ej.
    Woolrich, Mark W.
    Smith, Stephen M.
    [J]. NEUROIMAGE, 2012, 62 (02) : 782 - 790