THE PRO-NORM OF A PROFINITE GROUP

被引:4
作者
Ferrara, Maria [1 ]
Trombetti, Marco [2 ]
机构
[1] Univ Campania Luigi Vanvitelli, Dipartimento Matemat & Fis, Viale Lincoln 5, I-81100 Caserta, Italy
[2] Complesso Univ Monte S Angelo, Univ Napoli Federico 2, Dipartimento Matemat & Applicaz Renato Caccioppoli, Via Cintia, I-80126 Naples, Italy
关键词
METANORM;
D O I
10.1007/s11856-022-2404-5
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In "classical " group theory, a subgroup which is often relevant in the study of a group G is the norm, i.e., the intersection of all normalizers of subgroups of G. The main aim of this paper is to introduce the analogous concept of pro-norm for a profinite group and to investigate its relation to the norm. In order to understand this connection, we first investigate profinite groups whose closed proper subgroups are normal or abelian. This will also naturally lead to the concept of pro-metanorm, which, in turns, generalize another very useful characteristic subgroup of an arbitrary group. Finally, other restrictions on closed proper subgroups of a profinite group are investigated.
引用
收藏
页码:399 / 429
页数:31
相关论文
共 20 条
  • [1] [Anonymous], 2004, OXFORD MATH MONOGRAP
  • [2] Baer R., 1935, Compos. Math., V2, P241
  • [3] Baer R., 1935, COMPOS MATH, V1, P254
  • [4] On finite minimal non-nilpotent groups
    Ballester-Bolinches, A
    Esteban-Romero, R
    Robinson, DJS
    [J]. PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2005, 133 (12) : 3455 - 3462
  • [5] Generalised norms in finite soluble groups
    Ballester-Bolinches, Adolfo
    Cossey, John
    Zhang, Liangcai
    [J]. JOURNAL OF ALGEBRA, 2014, 402 : 392 - 405
  • [6] Berkovich Y, 2008, DEGRUYTER EXPOS MATH, V46, P1, DOI 10.1515/9783110208221
  • [7] Brescia M., STRUCTURE METAHAMILT
  • [8] A note on nilpotent-by-Cernikov groups
    Bruno, B
    Napolitani, F
    [J]. GLASGOW MATHEMATICAL JOURNAL, 2004, 46 : 211 - 215
  • [9] The metanorm and its influence on the group structure
    De Falco, M.
    de Giovanni, F.
    Kurdachenko, L. A.
    Musella, C.
    [J]. JOURNAL OF ALGEBRA, 2018, 506 : 76 - 91
  • [10] The metanorm, a characteristic subgroup: Embedding properties
    De Falco, Maria
    de Giovanni, Francesco
    Kurdachenko, Leonid A.
    Musella, Carmela
    [J]. JOURNAL OF GROUP THEORY, 2018, 21 (05) : 847 - 864