Goodness-of-fit test for point processes first-order intensity

被引:2
作者
Borrajo, M. I. [1 ]
Gonzalez-Manteiga, W. [1 ]
Martinez-Miranda, M. D. [2 ]
机构
[1] Univ Santiago De Compostela, Dept Stat Math Anal & Optimizat, CITMAga, Santiago De Compostela, Spain
[2] Univ Granada, Dept Stat & Operat Res, Granada, Spain
关键词
Point processes; First-order intensity; Goodness-of-fit; Covariates; NONPARAMETRIC-ESTIMATION; DENSITY; REGRESSION; INFERENCE; SELECTION; MODELS;
D O I
10.1016/j.csda.2024.107929
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Modelling the first -order intensity function is one of the main aims in point process theory. An appropriate model describes the first -order intensity as a nonparametric function of spatial covariates. A formal testing procedure is presented to assess the goodness -of -fit of this model, assuming an inhomogeneous Poisson point process. The test is based on a quadratic distance between two kernel intensity estimators. The asymptotic normality of the test statistic is proved and a bootstrap procedure to approximate its distribution is suggested. The proposal is illustrated with two applications to real data sets, and an extensive simulation study to evaluate its finitesample performance.
引用
收藏
页数:16
相关论文
共 53 条
[1]  
Baddeley A, 2016, CHAP HALL CRC INTERD, P1
[2]   On two-stage Monte Carlo tests of composite hypotheses [J].
Baddeley, Adrian ;
Hardegen, Andrew ;
Lawrence, Thomas ;
Milne, Robin K. ;
Nair, Gopalan ;
Rakshit, Suman .
COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2017, 114 :75-87
[3]   Residual Diagnostics for Covariate Effects in Spatial Point Process Models [J].
Baddeley, Adrian ;
Chang, Ya-Mei ;
Song, Yong ;
Turner, Rolf .
JOURNAL OF COMPUTATIONAL AND GRAPHICAL STATISTICS, 2013, 22 (04) :886-905
[4]  
Baddeley A, 2012, STAT INTERFACE, V5, P221
[5]   Bootstrapping kernel intensity estimation for inhomogeneous point processes with spatial covariates [J].
Borrajo, M. I. ;
Gonzalez-Manteiga, W. ;
Martinez-Miranda, M. D. .
COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2020, 144 (144)
[6]   BOOTSTRAPPING THE MEAN INTEGRATED SQUARED ERROR [J].
CAO, R .
JOURNAL OF MULTIVARIATE ANALYSIS, 1993, 45 (01) :137-160
[7]   Multivariate plug-in bandwidth selection with unconstrained pilot bandwidth matrices [J].
Chacon, J. E. ;
Duong, T. .
TEST, 2010, 19 (02) :375-398
[8]  
Collomb G., 1976, Ph.D. dissertation
[9]   Bootstrap confidence regions for the intensity of a Poisson point process [J].
Cowling, A ;
Hall, P ;
Phillips, MJ .
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 1996, 91 (436) :1516-1524
[10]  
Cressie N., 1993, Statistics for spatial data, DOI DOI 10.1002/9781119115151