Dynamic Optimization of Fuel Cell Operating Conditions at Different Altitudes

被引:0
作者
Chen, Jinzhou [1 ]
He, Hongwen [1 ]
Quan, Shengwei [1 ]
Wei, Zhongbao [1 ]
Zhang, Zhendong [1 ]
Zhang, Jun [1 ]
机构
[1] Beijing Inst Technol, Natl Engn Res Ctr Elect Vehicles, Beijing, Peoples R China
来源
2023 IEEE VEHICLE POWER AND PROPULSION CONFERENCE, VPPC | 2023年
关键词
fuel cell; air supply system; perturbation and observation; power optimization; altitude adaptation;
D O I
10.1109/VPPC60535.2023.10403144
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
This paper presents a model of the fuel cell (FC) cathode air supply system that considers altitude variation. Additionally, an algorithm that optimizes power by using perturbation and observation (P&O) is proposed to ensure that the FC outputs the maximum net power under high altitude conditions. To analyze the sensitivity of the algorithm parameters, power optimization results with varying iteration cycle times, voltage perturbation steps, and power change thresholds are compared to optimize the algorithm parameters. The proposed algorithm's power optimization performance and altitude adaptation capability are demonstrated through a comparative analysis with the offline optimization method at two different altitudes. The simulation results show that the proposed P&O algorithm has the same optimization capability as the offline optimization algorithm and can adapt to the altitude change.
引用
收藏
页数:6
相关论文
共 50 条
[41]   Comparative study of different fuel cell technologies [J].
Mekhilef, S. ;
Saidur, R. ;
Safari, A. .
RENEWABLE & SUSTAINABLE ENERGY REVIEWS, 2012, 16 (01) :981-989
[42]   Comparative study of different fuel cell technologies [J].
Alvarado-Flores, J. .
BOLETIN DE LA SOCIEDAD ESPANOLA DE CERAMICA Y VIDRIO, 2013, 52 (03) :105-117
[43]   Operating Point Optimization of a Hydrogen Fueled Hybrid Solid Oxide Fuel Cell-Steam Turbine (SOFC-ST) Plant [J].
Ugartemendia, Juanjo ;
Xabier Ostolaza, J. ;
Zubia, Itziar .
ENERGIES, 2013, 6 (10) :5046-5068
[44]   Fuel cell health state estimation based on a novel dynamic degradation model under non-fixed dynamic vehicle working conditions [J].
Li, Jianwei ;
Zou, Weitao ;
He, Hongwen ;
Zhang, Chenyu ;
Zhai, Shuang ;
Wan, Xinming ;
Mao, Zhanxing .
APPLIED ENERGY, 2025, 391
[45]   Efficient Multidimensional Dynamic Programming-Based Energy Management Strategy for Global Composite Operating Cost Minimization for Fuel Cell Trams [J].
Meng, Xiang ;
Li, Qi ;
Zhang, Guorui ;
Chen, Weirong .
IEEE TRANSACTIONS ON TRANSPORTATION ELECTRIFICATION, 2022, 8 (02) :1807-1818
[46]   Optimization of the efficiency and degradation rate of an automotive fuel cell [J].
Hahn, Sergei ;
Braun, Jochen ;
Kemmer, Helerson ;
Reuss, Hans-Christian .
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2021, 46 (57) :29459-29477
[47]   Optimization of robot fuel cell hybrid power system [J].
Lü X. ;
Ma Y. ;
Liu W. .
Shanghai Jiaotong Daxue Xuebao/Journal of Shanghai Jiaotong University, 2016, 50 (12) :1936-1939
[48]   Model Structure Optimization for Fuel Cell Polarization Curves [J].
Ohenoja, Markku ;
Sorsa, Aki ;
Leiviska, Kauko .
COMPUTERS, 2018, 7 (04)
[49]   Dynamic Reliability Assessment of PEM Fuel Cell Systems [J].
Vasilyev, A. ;
Andrews, J. ;
Dunnett, S. J. ;
Jackson, L. M. .
RELIABILITY ENGINEERING & SYSTEM SAFETY, 2021, 210
[50]   A dynamic simulation tool for hydrogen fuel cell vehicles [J].
Moore, RM ;
Hauer, KH ;
Friedman, D ;
Cunningham, J ;
Badrinarayanan, P ;
Ramaswamy, S ;
Eggert, A .
JOURNAL OF POWER SOURCES, 2005, 141 (02) :272-285