Tropical Monte Carlo quadrature for Feynman integrals

被引:15
作者
Borinsky, Michael [1 ,2 ]
机构
[1] Nikhef, Sci Pk 105, NL-1098 XG Amsterdam, Netherlands
[2] Swiss Fed Inst Technol, Inst Theoret Studies, CH-8092 Zurich, Switzerland
来源
ANNALES DE L INSTITUT HENRI POINCARE D | 2023年 / 10卷 / 04期
关键词
Algebraic integrals; numerical integration; Feynman integrals; tropical geometry; Monte Carlo; DIFFERENTIAL-EQUATIONS; HOPF ALGEBRA; AMPLITUDES; ALGORITHM; VOLUME; COACTION; GRAPHS; MODULI;
D O I
10.4171/AIHPD/158
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We introduce a new method to evaluate algebraic integrals over the simplex numerically. This new approach employs techniques from tropical geometry and exceeds the capabilities of existing numerical methods by an order of magnitude. The method can be improved further by exploiting the geometric structure of the underlying integrand. As an illustration of this, we give a specialized integration algorithm for a class of integrands that exhibit the form of a generalized permutahedron. This class includes integrands for scattering amplitudes and parametric Feynman integrals with tame kinematics. A proof-of-concept implementation is provided with which Feynman integrals up to loop order 17 can be evaluated.
引用
收藏
页码:635 / 685
页数:51
相关论文
共 103 条
  • [1] Aguiar M, 2017, Arxiv, DOI arXiv:1709.07504
  • [2] Arkani-Hamed N, 2011, J HIGH ENERGY PHYS, DOI 10.1007/JHEP01(2011)041
  • [3] Stringy canonical forms
    Arkani-Hamed, Nima
    He, Song
    Lam, Thomas
    [J]. JOURNAL OF HIGH ENERGY PHYSICS, 2021, 2021 (02)
  • [4] Scattering forms and the positive geometry of kinematics, color and the worldsheet
    Arkani-Hamed, Nima
    Bai, Yuntao
    He, Song
    Yan, Gongwang
    [J]. JOURNAL OF HIGH ENERGY PHYSICS, 2018, (05):
  • [5] Positive geometries and canonical forms
    Arkani-Hamed, Nima
    Bai, Yuntao
    Lam, Thomas
    [J]. JOURNAL OF HIGH ENERGY PHYSICS, 2017, (11):
  • [6] COMPUTING THE VOLUME IS DIFFICULT
    BARANY, I
    FUREDI, Z
    [J]. DISCRETE & COMPUTATIONAL GEOMETRY, 1987, 2 (04) : 319 - 326
  • [7] ANHARMONIC OSCILLATOR
    BENDER, CM
    WU, TT
    [J]. PHYSICAL REVIEW, 1969, 184 (05): : 1231 - &
  • [8] Berghoff M, 2022, Arxiv, DOI arXiv:2008.09540
  • [9] Feynman amplitudes on moduli spaces of graphs
    Berghoff, Marko
    [J]. ANNALES DE L INSTITUT HENRI POINCARE D, 2020, 7 (02): : 203 - 232
  • [10] Euler-Mellin Integrals and A-Hypergeometric Functions
    Berkesch, Christine
    Forsgard, Jens
    Passare, Mikael
    [J]. MICHIGAN MATHEMATICAL JOURNAL, 2014, 63 (01) : 101 - 123