An experimental and numerical study on an innovative metastructure for 3D printed thermoplastic polyurethane with auxetic performance

被引:0
|
作者
Mojaver, Mehran [1 ]
Azdast, Taher [1 ,2 ]
Hasanzadeh, Rezgar [1 ]
机构
[1] Urmia Univ, Fac Engn, Dept Mech Engn, Orumiyeh, Iran
[2] Urmia Univ, Fac Engn, Dept Mech Engn, Orumiyeh 5756151818, Iran
关键词
3D printing; auxetic structure; metamaterial; negative Poisson's ratio; thermoplastic polyurethane;
D O I
10.1002/pat.6298
中图分类号
O63 [高分子化学(高聚物)];
学科分类号
070305 ; 080501 ; 081704 ;
摘要
Metamaterials are specifically designed materials that possess unique properties that cannot be found in naturally occurring substances. These remarkable materials have the capability to bring about a significant transformation across a wide range of industries. Auxetic structures are a recent area of research possess a distinctive characteristic known as a negative Poisson's ratio. Unlike conventional materials that contract when stretched, auxetic structures actually expand in two dimensions. In this study, a new auxetic structure was introduced, and thermoplastic polyurethane samples were 3D printed using a fused filament fabrication method. The samples are then subjected to strains ranging from 5% to 50% and Poisson's ratios are measured both experimentally and numerically using finite element method in Ansys software. By comparing the results of the experimental research and simulation, it is evident that applying strains within this range causes the Poisson's ratio of the samples to change from -0.81 to -0.14 and it showed that the newly introduced structure is auxetic. According to the analysis of root mean square error, the hexagonal mesh with a size of 0.7 mm consistently produced the most accurate results, aligning closely with the experimental sample. Given that this is an entirely novel auxetic structure within the category of arrow-head auxetic structures, there is potential for future research to be conducted in order to further develop and enhance this model.
引用
收藏
页数:13
相关论文
共 50 条
  • [1] 3D Printed Thermoplastic Polyurethane Filled with Polyurethane Foams Residues
    N. Gama
    A. Ferreira
    A. Barros-Timmons
    Journal of Polymers and the Environment, 2020, 28 : 1560 - 1570
  • [2] 3D Printed Thermoplastic Polyurethane Filled with Polyurethane Foams Residues
    Gama, N.
    Ferreira, A.
    Barros-Timmons, A.
    JOURNAL OF POLYMERS AND THE ENVIRONMENT, 2020, 28 (05) : 1560 - 1570
  • [3] 3D printed thermoplastic polyurethane with isotropic material properties
    Hohimer, Cameron
    Christ, Josef
    Aliheidari, Nahal
    Mo, Changki
    Ameli, Amir
    BEHAVIOR AND MECHANICS OF MULTIFUNCTIONAL MATERIALS AND COMPOSITES 2017, 2017, 10165
  • [4] Effect of heat treatment on the performance of 3D printed thermoplastic polyurethane flexible substrates
    Gu, Sujuan
    Ma, Jing
    Kang, Luhan
    Wei, Hongtao
    Jiang, Lin
    Wang, Lixia
    JOURNAL OF APPLIED POLYMER SCIENCE, 2023, 140 (16)
  • [5] Compressive properties of 3D printed auxetic structures: experimental and numerical studies
    Alomarah, Amer
    Masood, Syed H.
    Sbarski, Igor
    Faisal, Batool
    Gao, Zhanyuan
    Ruan, Dong
    VIRTUAL AND PHYSICAL PROTOTYPING, 2020, 15 (01) : 1 - 21
  • [6] Compression performance of 3D-printed thermoplastic auxetic structures
    He, Pan
    Wang, Siwen
    Zhang, Miaomiao
    Sang, Lin
    Tong, Liyong
    Hou, Wenbin
    THIN-WALLED STRUCTURES, 2024, 197
  • [7] Idealized 3D Auxetic Mechanical Metamaterial: An Analytical, Numerical, and Experimental Study
    Ghavidelnia, Naeim
    Bodaghi, Mahdi
    Hedayati, Reza
    MATERIALS, 2021, 14 (04) : 1 - 36
  • [8] A preliminary study of cushion properties of a 3D printed thermoplastic polyurethane Kelvin foam
    Ge, Changfeng
    Priyadarshini, Lakshmi
    Cormier, Denis
    Pan, Liao
    Tuber, Jonathan
    PACKAGING TECHNOLOGY AND SCIENCE, 2018, 31 (05) : 361 - 368
  • [9] Experimental and finite element analyses of a 3D printed sandwich with an auxetic or non-auxetic core
    Hamrouni, Anis
    Rebiere, Jean-Luc
    El Mahi, Abderrahim
    Beyaoui, Moez
    Haddar, Mohamed
    JOURNAL OF SANDWICH STRUCTURES & MATERIALS, 2023, 25 (04) : 426 - 444
  • [10] Soft 3D printing of thermoplastic polyurethane: Preliminary study
    Fenollosa-Artes, Felip
    Jorand, Leo
    Tejo-Otero, Aitor
    Lustig-Gainza, Pamela
    Romero-Sabat, Guillem
    Medel, Sandra
    Uceda, Roger
    PROCEEDINGS OF THE INSTITUTION OF MECHANICAL ENGINEERS PART B-JOURNAL OF ENGINEERING MANUFACTURE, 2023, 237 (6-7) : 1128 - 1135