Synergistic toughening modification and finite element analysis of carbon fiber/epoxy resin-reinforced composites

被引:0
|
作者
Xu, Weihao [1 ]
Wang, Yuqing [1 ]
Gu, Zhiqi [2 ]
Wang, Ping [1 ]
Zhang, Yan [1 ,4 ]
Li, Yuanyuan [1 ,3 ,4 ]
机构
[1] Soochow Univ, Coll Text & Clothing Engn, Key Lab Jiangsu Prov Silk Engn, Suzhou, Peoples R China
[2] Nantong Hanvo New Mat Technol Co Ltd, Nantong, Peoples R China
[3] Jiangsu Adv Text Engn Technol Ctr, Nantong, Peoples R China
[4] Soochow Univ, Coll Text & Clothing Engn, Key Lab Jiangsu Prov Silk Engn, Suzhou 215006, Peoples R China
基金
中国国家自然科学基金;
关键词
carbon fiber-reinforced composites; failure mechanism; finite element modeling; fracture toughness; MECHANICAL-PROPERTIES; FRACTURE-TOUGHNESS; EPOXY-RESIN; MODE-I; GLASS;
D O I
10.1002/pc.28177
中图分类号
TB33 [复合材料];
学科分类号
摘要
In this work, the poor fracture toughness of carbon fiber-reinforced composites (CFRPs) was improved by the introduction of a graphene oxide/nanosilica (GOS) hybrid, and short carbon fibers (SCFs) were investigated through experimental and modeling methods. The effects of the SCF content, number of SCF layers, and introduction position on the mode I fracture toughness (GIC) and mode II fracture toughness (GIIC) of the composites were considered for epoxy resin (EP) modified by GOS. The results showed that GOS and SCF exhibited a synergistic toughening effect on CFRP. The GIC and GIIC of CFRP laminate with GOS content of 0.2 wt% and SCF content of 0.4 wt% reached 0.506 and 2.15 kJ/m2, increased by 72.2% and 53.6% compared to the unmodified composite, respectively. The number of layers and the lamination mode of GC10S5-B specimens exhibited the optimal improvement of interlaminar fracture toughness. Similarly compared with those of the original. The GIC and GIIC of the CFRP laminates reached 0.662 and 0.506 kJ/m2 (enhanced by 125.9% and 95%, respectively). In addition, the stress propagation path and distribution, and progressive damage of the CFRP composites were obtained to further reveal the toughness mechanism.Highlights Synergistic toughening of resin modification and short carbon fiber on modes I and II fracture toughness of composites were considered. Content of short carbon fiber and lay-up methods on toughness performance were investigated thoroughly. Finite element models were established to reveal the stress progress and distribution and toughness mechanism. Preparation and performance testing of synergistic toughened laminates. image
引用
收藏
页码:6021 / 6040
页数:20
相关论文
共 50 条
  • [31] CARBON-FIBER REINFORCED EPOXY COMPOSITES
    PATEL, RH
    PATEL, RG
    POLYMER INTERNATIONAL, 1993, 30 (03) : 301 - 303
  • [32] Fracture toughness of the novel in-situ polytriazolesulfone modified epoxy resin for carbon fiber/epoxy composites
    Lee, Minkyu
    Kwon, Woong
    Kwon, Dongjun
    Lee, Eunsoo
    Jeong, Euigyung
    JOURNAL OF INDUSTRIAL AND ENGINEERING CHEMISTRY, 2019, 77 : 461 - 469
  • [33] Synthesis and Characterization of Fluorinated Poly(etherimide)s Toughening for Carbon Fiber-Reinforced Epoxy Composites
    Chen, Weiming
    Tao, Zhiqiang
    Fan, Lin
    Yang, Shiyong
    Jiang, Wenge
    Wang, Junfeng
    Xiong, Yanli
    POLYMER COMPOSITES, 2010, 31 (04) : 666 - 673
  • [34] Healable Carbon Fiber-Reinforced Epoxy/Cyclic Olefin Copolymer Composites
    Mahmood, Haroon
    Dorigato, Andrea
    Pegoretti, Alessandro
    MATERIALS, 2020, 13 (09)
  • [35] Pristine and amino functionalized carbon nanotubes reinforced glass fiber epoxy composites
    Garg, Mohit
    Sharma, Shruti
    Mehta, Rajeev
    COMPOSITES PART A-APPLIED SCIENCE AND MANUFACTURING, 2015, 76 : 92 - 101
  • [36] Synergistic effect of surface modification of carbon fabrics and multiwall carbon nanotube incorporation for improving tribological properties of carbon fabrics/resin composites
    Wang, Beibei
    Fu, Qiangang
    Li, Hejun
    Qi, Lehua
    Lu, Yuanyuan
    POLYMER COMPOSITES, 2020, 41 (01) : 102 - 111
  • [37] Graphene oxide modified carbon fiber reinforced epoxy composites
    Altin, Yasin
    Yilmaz, Hazal
    Unsal, Omer Faruk
    Bedeloglu, Ayse Celik
    JOURNAL OF POLYMER ENGINEERING, 2020, 40 (05) : 415 - 420
  • [38] Synergistic interlaminar strengthening of unidirectional carbon fiber-reinforced composites using carbon nanofiber-modified sizing on the surface of PET interleaves
    Oh, Chang-Bin
    Kim, Byeong-Joo
    Lee, Man Young
    COMPOSITES PART B-ENGINEERING, 2023, 264
  • [39] Effect of epoxy coatings on carbon fibers during manufacture of carbon fiber reinforced resin matrix composites
    Guo, Hui
    Huang, Yudong
    Liu, Li
    Shi, Xiaohua
    MATERIALS & DESIGN, 2010, 31 (03) : 1186 - 1190
  • [40] Comparing Mechanical Tests of Carbon Fiber Epoxy Resin and Carbon Fiber Polyamide Resin Composites
    Schreiber, Robert
    Klepek, Manuel
    Moneke, Martin
    Fleischhauer, Martin
    MACROMOLECULAR SYMPOSIA, 2017, 373 (01)