High-Yield Lasso Peptide Production in a Burkholderia Bacterial Host by Plasmid Copy Number Engineering

被引:7
|
作者
Fernandez, Hannah N. [1 ,2 ]
Kretsch, Ashley M. [3 ,4 ]
Kunakom, Sylvia [1 ,2 ]
Kadjo, Adjo E. [1 ,2 ]
Mitchell, Douglas A. [3 ,4 ]
Eustaquio, Alessandra S. [1 ,2 ]
机构
[1] Univ Illinois, Dept Pharmaceut Sci, Coll Pharm, Chicago, IL 60607 USA
[2] Univ Illinois, Coll Pharm, Ctr Biomol Sci, Chicago, IL 60607 USA
[3] Univ Illinois, Dept Chem, Urbana, IL 61801 USA
[4] Univ Illinois, Carl R Woese Inst Genom Biol, Urbana, IL 61801 USA
来源
ACS SYNTHETIC BIOLOGY | 2024年 / 13卷 / 01期
基金
美国国家卫生研究院;
关键词
lasso peptide; RiPP; natural product; secondary metabolite; bacteria; heterologousexpression; Burkholderiaceae; BIOSYNTHESIS; EXPRESSION; TRANSCRIPTION; REPLICATION; CAPISTRUIN;
D O I
10.1021/acssynbio.3c00597
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
The knotted configuration of lasso peptides confers thermal stability and proteolytic resistance, addressing two shortcomings of peptide-based drugs. However, low isolation yields hinder the discovery and development of lasso peptides. While testing Burkholderia sp. FERM BP-3421 as a bacterial host to produce the lasso peptide capistruin, an overproducer clone was previously identified. In this study, we show that an increase in the plasmid copy number partially contributed to the overproducer phenotype. Further, we modulated the plasmid copy number to recapitulate titers to an average of 160% relative to the overproducer, which is 1000-fold higher than previously reported with E. coli, reaching up to 240 mg/L. To probe the applicability of the developed tools for lasso peptide discovery, we targeted a new lasso peptide biosynthetic gene cluster from endosymbiont Mycetohabitans sp. B13, leading to the isolation of mycetolassin-15 and mycetolassin-18 in combined titers of 11 mg/L. These results validate Burkholderia sp. FERM BP-3421 as a production platform for lasso peptide discovery.
引用
收藏
页码:337 / 350
页数:14
相关论文
共 31 条
  • [1] Heterologous Production of Lasso Peptide Capistruin in a Burkholderia Host
    Kunakom, Sylvia
    Eustaquio, Alessandra S.
    ACS SYNTHETIC BIOLOGY, 2020, 9 (02): : 241 - 248
  • [2] Engineering Escherichia coli for high-yield production of ectoine
    Wang, Daoan
    Chen, Jiamin
    Wang, Yang
    Du, Guocheng
    Kang, Zhen
    GREEN CHEMICAL ENGINEERING, 2023, 4 (02) : 217 - 223
  • [3] Metabolic engineering of tomato for high-yield production of astaxanthin
    Huang, Jun-Chao
    Zhong, Yu-Juan
    Liu, Jin
    Sandmann, Gerhard
    Chen, Feng
    METABOLIC ENGINEERING, 2013, 17 : 59 - 67
  • [4] Pathway engineering for high-yield production of lutein in Escherichia coli
    Takemura, Miho
    Kubo, Akiko
    Watanabe, Asuka
    Sakuno, Hanayo
    Minobe, Yuka
    Sahara, Takehiko
    Murata, Masahiro
    Araki, Michihiro
    Harada, Hisashi
    Terada, Yoshinobu
    Yaoi, Katsuro
    Ohdan, Kohji
    Misawa, Norihiko
    SYNTHETIC BIOLOGY, 2021, 6 (01)
  • [5] Design of a microaerobically inducible replicon for high-yield plasmid DNA production
    Jaen, Karim E.
    Velazquez, Daniela
    Sigala, Juan-Carlos
    Lara, Alvaro R.
    BIOTECHNOLOGY AND BIOENGINEERING, 2019, 116 (10) : 2514 - 2525
  • [6] The metabolic engineering of Escherichia coli for the high-yield production of hypoxanthine
    Zhao, Siyu
    Shi, Tangen
    Li, Liangwen
    Chen, Zhichao
    Li, Changgeng
    Yu, Zichen
    Sun, Pengjie
    Xu, Qingyang
    MICROBIAL CELL FACTORIES, 2024, 23 (01)
  • [7] Dual cytoplasmic-peroxisomal engineering for high-yield production of sesquiterpene α-humulene in Yarrowia lipolytica
    Guo, Qi
    Li, Ya-Wen
    Yan, Fang
    Li, Ke
    Wang, Yue-Tong
    Ye, Chao
    Shi, Tian-Qiong
    Huang, He
    BIOTECHNOLOGY AND BIOENGINEERING, 2022, 119 (10) : 2819 - 2830
  • [8] Metabolic Engineering of Escherichia coli for High-Yield Production of (R)-1,3-Butanediol
    Liu, Yu
    Cen, Xuecong
    Liu, Dehua
    Chen, Zhen
    ACS SYNTHETIC BIOLOGY, 2021, 10 (08): : 1946 - 1955
  • [9] Lipid engineering combined with systematic metabolic engineering of Saccharomyces cerevisiae for high-yield production of lycopene
    Ma, Tian
    Shi, Bin
    Ye, Ziling
    Li, Xiaowei
    Liu, Min
    Chen, Yun
    Xia, Jiang
    Nielsen, Jens
    Deng, Zixin
    Liu, Tiangang
    METABOLIC ENGINEERING, 2019, 52 : 134 - 142
  • [10] Systematic engineering for high-yield production of viridiflorol and amorphadiene in auxotrophic Escherichia coli
    Shukal, Sudha
    Chen, Xixian
    Zhang, Congqiang
    METABOLIC ENGINEERING, 2019, 55 : 170 - 178