Uncertainty analysis of dynamic mode decomposition for xenon dynamic forecasting

被引:3
作者
Liu, Jianpeng [1 ]
Gong, Helin [2 ,3 ]
Wang, Zhiyong [1 ]
Li, Qing [3 ]
机构
[1] Univ Elect Sci & Technol China, Sch Math Sci, Chengdu 611731, Sichuan, Peoples R China
[2] Shanghai Jiao Tong Univ, Paris Elite Inst Technol, Shanghai 200240, Peoples R China
[3] Nucl Power Inst China, Chengdu 610041, Peoples R China
基金
上海市自然科学基金;
关键词
Dynamic mode decomposition; Uncertainty quantification; Xenon dynamical forecasting; HPR1000; Data-driven strategy; DATA ASSIMILATION; QUANTIFICATION; SYSTEMS;
D O I
10.1016/j.anucene.2023.110106
中图分类号
TL [原子能技术]; O571 [原子核物理学];
学科分类号
0827 ; 082701 ;
摘要
In this paper, a systematic uncertainty quantification of dynamic mode decomposition (DMD) for xenon dynamic prediction is brought out based on HPR1000 reactor. The DMD method is a data-driven approach that decomposes complex systems into spatio-temporal structures and can be used to predict the power distribution in the process of xenon oscillation. To further investigate and improve the robustness of DMD with respect to observation noise, different error metrics are established. The dependence of the prediction error on observation noise level and hyper parameters including the window length and the singular value truncation threshold are investigated. Various numerical experiments based on a typical fuel cycle of the HPR1000 reactor demonstrate that DMD with optimal hyper parameters is robust with respect to observation noise, which confirms that DMD is feasible for real engineering applications.
引用
收藏
页数:10
相关论文
共 50 条
  • [41] A characteristic dynamic mode decomposition
    Jörn Sesterhenn
    Amir Shahirpour
    Theoretical and Computational Fluid Dynamics, 2019, 33 : 281 - 305
  • [42] Incremental Low-Rank Dynamic Mode Decomposition Model for Efficient Forecast Dissemination and Onboard Forecasting
    Ryu, T.
    Ali, W. H.
    Haley, P. J.
    Mirabito, C.
    Charous, A.
    Lermusiaux, P. F. J.
    2022 OCEANS HAMPTON ROADS, 2022,
  • [43] Dynamic mode decomposition analysis of rotating detonation waves
    Bohon, M. D.
    Orchini, A.
    Bluemner, R.
    Paschereit, C. O.
    Gutmark, E. J.
    SHOCK WAVES, 2021, 31 (07) : 637 - 649
  • [44] Identification of dynamic textures using Dynamic Mode Decomposition
    Previtali, D.
    Valceschini, N.
    Mazzoleni, M.
    Previdi, F.
    IFAC PAPERSONLINE, 2020, 53 (02): : 2423 - 2428
  • [45] Analysis of aggregated load consumption forecasting in short, medium and long term horizons using Dynamic Mode Decomposition
    Munoz, Marc Carrillo
    Penalba, Monica Aragues
    Gonzalez, Antonio E. Saldana
    ENERGY REPORTS, 2024, 12 : 1000 - 1013
  • [46] Time-series forecasting of ships maneuvering in waves via dynamic mode decomposition
    Matteo Diez
    Andrea Serani
    Emilio F. Campana
    Frederick Stern
    Journal of Ocean Engineering and Marine Energy, 2022, 8 : 471 - 478
  • [47] On the use of dynamic mode decomposition for time-series forecasting of ships operating in waves
    Serani, Andrea
    Dragone, Paolo
    Stern, Frederick
    Diez, Matteo
    OCEAN ENGINEERING, 2023, 267
  • [48] Time-series forecasting of ships maneuvering in waves via dynamic mode decomposition
    Diez, Matteo
    Serani, Andrea
    Campana, Emilio F.
    Stern, Frederick
    JOURNAL OF OCEAN ENGINEERING AND MARINE ENERGY, 2022, 8 (04) : 471 - 478
  • [49] Dynamic Mode Decomposition with Reproducing Kernels for Koopman Spectral Analysis
    Kawahara, Yoshinobu
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 29 (NIPS 2016), 2016, 29
  • [50] Modal Analysis of the Human Brain Using Dynamic Mode Decomposition
    Mclean, Jayse
    Fereydoonpour, Mehran
    Ziejewski, Mariusz
    Karami, Ghodrat
    BIOENGINEERING-BASEL, 2024, 11 (06):