Uncertainty analysis of dynamic mode decomposition for xenon dynamic forecasting

被引:3
作者
Liu, Jianpeng [1 ]
Gong, Helin [2 ,3 ]
Wang, Zhiyong [1 ]
Li, Qing [3 ]
机构
[1] Univ Elect Sci & Technol China, Sch Math Sci, Chengdu 611731, Sichuan, Peoples R China
[2] Shanghai Jiao Tong Univ, Paris Elite Inst Technol, Shanghai 200240, Peoples R China
[3] Nucl Power Inst China, Chengdu 610041, Peoples R China
基金
上海市自然科学基金;
关键词
Dynamic mode decomposition; Uncertainty quantification; Xenon dynamical forecasting; HPR1000; Data-driven strategy; DATA ASSIMILATION; QUANTIFICATION; SYSTEMS;
D O I
10.1016/j.anucene.2023.110106
中图分类号
TL [原子能技术]; O571 [原子核物理学];
学科分类号
0827 ; 082701 ;
摘要
In this paper, a systematic uncertainty quantification of dynamic mode decomposition (DMD) for xenon dynamic prediction is brought out based on HPR1000 reactor. The DMD method is a data-driven approach that decomposes complex systems into spatio-temporal structures and can be used to predict the power distribution in the process of xenon oscillation. To further investigate and improve the robustness of DMD with respect to observation noise, different error metrics are established. The dependence of the prediction error on observation noise level and hyper parameters including the window length and the singular value truncation threshold are investigated. Various numerical experiments based on a typical fuel cycle of the HPR1000 reactor demonstrate that DMD with optimal hyper parameters is robust with respect to observation noise, which confirms that DMD is feasible for real engineering applications.
引用
收藏
页数:10
相关论文
共 50 条
  • [21] Randomized Dynamic Mode Decomposition for Oscillation Modal Analysis
    Alassaf, Abdullah
    Fan, Lingling
    IEEE TRANSACTIONS ON POWER SYSTEMS, 2021, 36 (02) : 1399 - 1408
  • [22] Subspace dynamic mode decomposition for stochastic Koopman analysis
    Takeishi, Naoya
    Kawahara, Yoshinobu
    Yairi, Takehisa
    PHYSICAL REVIEW E, 2017, 96 (03)
  • [23] INVESTIGATION ON APPLICABILITY OF DYNAMIC MODE DECOMPOSITION IN BURNUP ANALYSIS
    Xue, Pengchao
    Zhang, Qian
    Zhao, Qiang
    Zhang, Yunfei
    PROCEEDINGS OF 2024 31ST INTERNATIONAL CONFERENCE ON NUCLEAR ENGINEERING, VOL 2, ICONE31 2024, 2024,
  • [25] Singular Dynamic Mode Decomposition
    Rosenfeld, Joel A.
    Kamalapurkar, Rushikesh
    SIAM JOURNAL ON APPLIED DYNAMICAL SYSTEMS, 2023, 22 (03) : 2357 - 2381
  • [26] A characteristic dynamic mode decomposition
    Sesterhenn, Joern
    Shahirpour, Amir
    THEORETICAL AND COMPUTATIONAL FLUID DYNAMICS, 2019, 33 (3-4) : 281 - 305
  • [27] Applications of the dynamic mode decomposition
    P. J. Schmid
    L. Li
    M. P. Juniper
    O. Pust
    Theoretical and Computational Fluid Dynamics, 2011, 25 : 249 - 259
  • [28] Consistent Dynamic Mode Decomposition
    Azencot, Omri
    Yin, Wotao
    Bertozzi, Andrea
    SIAM JOURNAL ON APPLIED DYNAMICAL SYSTEMS, 2019, 18 (03) : 1565 - 1585
  • [29] Applications of the dynamic mode decomposition
    Schmid, P. J.
    Li, L.
    Juniper, M. P.
    Pust, O.
    THEORETICAL AND COMPUTATIONAL FLUID DYNAMICS, 2011, 25 (1-4) : 249 - 259
  • [30] Koopman analysis by the dynamic mode decomposition in wind engineering
    Li, Cruz Y.
    Chen, Zengshun
    Zhang, Xuelin
    Tse, Tim K. T.
    Lin, Chongjia
    JOURNAL OF WIND ENGINEERING AND INDUSTRIAL AERODYNAMICS, 2023, 232