Uncertainty analysis of dynamic mode decomposition for xenon dynamic forecasting

被引:3
作者
Liu, Jianpeng [1 ]
Gong, Helin [2 ,3 ]
Wang, Zhiyong [1 ]
Li, Qing [3 ]
机构
[1] Univ Elect Sci & Technol China, Sch Math Sci, Chengdu 611731, Sichuan, Peoples R China
[2] Shanghai Jiao Tong Univ, Paris Elite Inst Technol, Shanghai 200240, Peoples R China
[3] Nucl Power Inst China, Chengdu 610041, Peoples R China
基金
上海市自然科学基金;
关键词
Dynamic mode decomposition; Uncertainty quantification; Xenon dynamical forecasting; HPR1000; Data-driven strategy; DATA ASSIMILATION; QUANTIFICATION; SYSTEMS;
D O I
10.1016/j.anucene.2023.110106
中图分类号
TL [原子能技术]; O571 [原子核物理学];
学科分类号
0827 ; 082701 ;
摘要
In this paper, a systematic uncertainty quantification of dynamic mode decomposition (DMD) for xenon dynamic prediction is brought out based on HPR1000 reactor. The DMD method is a data-driven approach that decomposes complex systems into spatio-temporal structures and can be used to predict the power distribution in the process of xenon oscillation. To further investigate and improve the robustness of DMD with respect to observation noise, different error metrics are established. The dependence of the prediction error on observation noise level and hyper parameters including the window length and the singular value truncation threshold are investigated. Various numerical experiments based on a typical fuel cycle of the HPR1000 reactor demonstrate that DMD with optimal hyper parameters is robust with respect to observation noise, which confirms that DMD is feasible for real engineering applications.
引用
收藏
页数:10
相关论文
共 50 条
  • [1] A Hybrid Data Assimilation and Dynamic Mode Decomposition Approach for Xenon Dynamic Prediction of Nuclear Reactor Cores
    Liu, Jianpeng
    Wang, Zhiyong
    Li, Qing
    Gong, Helin
    NUCLEAR SCIENCE AND ENGINEERING, 2024,
  • [2] A data-driven strategy for xenon dynamical forecasting using dynamic mode decomposition
    Gong, Helin
    Yu, Yingrui
    Peng, Xingjie
    Li, Qing
    ANNALS OF NUCLEAR ENERGY, 2020, 149
  • [3] Bagging, optimized dynamic mode decomposition for robust, stable forecasting with spatial and temporal uncertainty quantification
    Sashidhar, Diya
    Kutz, J. Nathan
    PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2022, 380 (2229):
  • [4] Combining dynamic mode decomposition with ensemble Kalman filtering for tracking and forecasting
    Falconer, Stephen A.
    Lloyd, David J. B.
    Santitissadeekorn, Naratip
    PHYSICA D-NONLINEAR PHENOMENA, 2023, 449
  • [5] PREDICTION ACCURACY OF DYNAMIC MODE DECOMPOSITION
    Lu, Hannah
    Tartakovsky, Daniel M.
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2020, 42 (03) : A1639 - A1662
  • [6] An error analysis of the dynamic mode decomposition
    Daniel Duke
    Julio Soria
    Damon Honnery
    Experiments in Fluids, 2012, 52 : 529 - 542
  • [7] Scale-Separated Dynamic Mode Decomposition and Ionospheric Forecasting
    Alford-Lago, Daniel J.
    Curtis, Christopher W.
    Ihler, Alexander T.
    Zawdie, Katherine A.
    RADIO SCIENCE, 2023, 58 (08)
  • [8] Multiresolution Dynamic Mode Decomposition
    Kutz, J. Nathan
    Fu, Xing
    Brunton, Steven L.
    SIAM JOURNAL ON APPLIED DYNAMICAL SYSTEMS, 2016, 15 (02): : 713 - 735
  • [9] A Dynamic Mode Decomposition Extension for the Forecasting of Parametric Dynamical Systems
    Andreuzzi, Francesco
    Demo, Nicola
    Rozza, Gianluigi
    SIAM JOURNAL ON APPLIED DYNAMICAL SYSTEMS, 2023, 22 (03) : 2432 - 2458
  • [10] Dynamic Mode Decomposition with Control
    Proctor, Joshua L.
    Brunton, Steven L.
    Kutz, J. Nathan
    SIAM JOURNAL ON APPLIED DYNAMICAL SYSTEMS, 2016, 15 (01): : 142 - 161