A Transformer-Based microvascular invasion classifier enhances prognostic stratification in HCC following radiofrequency ablation

被引:8
作者
Wang, Wentao [1 ,2 ]
Wang, Yueyue [3 ]
Song, Danjun [4 ,5 ]
Zhou, Yingting [6 ]
Luo, Rongkui [7 ]
Ying, Siqi [8 ,9 ]
Yang, Li [1 ,2 ]
Sun, Wei [1 ]
Cai, Jiabin [10 ]
Wang, Xi [11 ]
Bao, Zhen [12 ]
Zheng, Jiaping [4 ,5 ]
Zeng, Mengsu [1 ,2 ]
Gao, Qiang [10 ,13 ]
Wang, Xiaoying [10 ]
Zhou, Jian [10 ,13 ]
Wang, Manning [8 ,9 ]
Shao, Guoliang [4 ,5 ,14 ,15 ]
Rao, Sheng-xiang [1 ,2 ,16 ,17 ]
Zhu, Kai [10 ,18 ]
机构
[1] Fudan Univ, Zhongshan Hosp, Canc Ctr, Dept Radiol, Shanghai, Peoples R China
[2] Shanghai Inst Med Imaging, Shanghai, Peoples R China
[3] Huawei Technol, Shanghai, Peoples R China
[4] Zhejiang Canc Hosp, Dept Intervent Therapy, Hangzhou, Peoples R China
[5] Chinese Acad Sci, Hangzhou Inst Med HIM, Hangzhou, Peoples R China
[6] Fudan Univ, Zhongshan Hosp, Liver Canc Inst, Dept Hepat Oncol, Shanghai, Peoples R China
[7] Fudan Univ, Zhongshan Hosp, Dept Pathol, Shanghai, Peoples R China
[8] Fudan Univ, Digital Med Res Ctr, Sch Basic Med Sci, Shanghai, Peoples R China
[9] Shanghai Key Lab Med Imaging Comp & Comp Assisted, Shanghai, Peoples R China
[10] Fudan Univ, Zhongshan Hosp, Liver Canc Inst, Minist Educ,Dept Liver Surg,Key Lab Carcinogenesis, Shanghai, Peoples R China
[11] Fudan Univ, Zhongshan Hosp, Dept Ultrasound, Shanghai, Peoples R China
[12] Zhejiang Canc Hosp, Dept Pathol, Hangzhou, Peoples R China
[13] Fudan Univ, Inst Biomed Sci, Shanghai, Peoples R China
[14] Univ Chinese Acad Sci, Chinese Acad Sci, Hangzhou 310022, Peoples R China
[15] Chinese Acad Sci, Hangzhou Inst Med HIM, Hangzhou 310018, Zhejiang, Peoples R China
[16] Fudan Univ, Zhongshan Hosp, Dept Radiol, 180 Fenglin Rd, Shanghai 200032, Peoples R China
[17] Shanghai Inst Med Imaging, 180 Fenglin Rd, Shanghai 200032, Peoples R China
[18] Fudan Univ, Zhongshan Hosp, Liver Canc Inst, Minist Educ,Dept Liver Surg,Key Lab Carcinogenesis, Shanghai 200032, Peoples R China
基金
中国国家自然科学基金;
关键词
deep learning; early-stage hepatocellular carcinoma; microvascular invasion; radiofrequency ablation; HEPATOCELLULAR-CARCINOMA; RESECTION;
D O I
10.1111/liv.15846
中图分类号
R57 [消化系及腹部疾病];
学科分类号
摘要
Background & Aims: We aimed to develop a Transformer-based deep learning (DL) network for prognostic stratification in hepatocellular carcinoma (HCC) patients undergoing RFA.Methods: A Swin Transformer DL network was trained to establish associations between magnetic resonance imaging (MRI) datasets and the ground truth of microvascular invasion (MVI) based on 696 surgical resection (SR) patients with solitary HCC <= 3 cm, and was validated in an external cohort (n = 180). The multiphase MRI-based DL risk outputs using an optimal threshold of .5 was employed as a MVI classifier for prognosis stratification in the RFA cohort (n = 180).Results: Over 90% of all enrolled patients exhibited hepatitis B virus infection. Liver cirrhosis was significantly more prevalent in the RFA cohort compared to the SR cohort (72.2% vs. 44.1%, p < .001). The MVI risk outputs exhibited good performance (area under the curve values = .938 and .883) for predicting MVI in the training and validation cohort, respectively. The RFA patients at high risk of MVI classified by the MVI classifier demonstrated significantly lower recurrence-free survival (RFS) and overall survival rates at 1, 3 and 5 years compared to those classified as low risk (p < .001). Multivariate cox regression modelling of a-fetoprotein > 20 ng/mL [hazard ratio (HR) = 1.53; 95% confidence interval (95% CI): 1.02-2.33, p = .047], high risk of MVI (HR = 3.76; 95% CI: 2.40-5.88, p < .001) and unfavourable tumour location (HR = 2.15; 95% CI: 1.40-3.29, p = .001) yielded a c-index of .731 (bootstrapped 95% CI: .667-.778) for evaluating RFS after RFA. Among the three risk factors, MVI was the most powerful predictor for intrahepatic distance recurrence.Conclusions: The proposed MVI classifier can serve as a valuable imaging biomarker for prognostic stratification in early-stage HCC patients undergoing RFA.
引用
收藏
页码:894 / 906
页数:13
相关论文
共 35 条
[1]   Preoperative Estimated Risk of Microvascular Invasion is Associated with Prognostic Differences Following Liver Resection Versus Radiofrequency Ablation for Early Hepatitis B Virus-Related Hepatocellular Carcinoma [J].
Bai, Shilei ;
Yang, Pinghua ;
Xie, Zhihao ;
Li, Jun ;
Lei, Zhengqing ;
Xia, Yong ;
Qian, Guojun ;
Zhang, Baohua ;
Pawlik, Timothy M. ;
Lau, Wan Yee ;
Shen, Feng .
ANNALS OF SURGICAL ONCOLOGY, 2021, 28 (13) :8174-8185
[2]   MVI-TR: A Transformer-Based Deep Learning Model with Contrast-Enhanced CT for Preoperative Prediction of Microvascular Invasion in Hepatocellular Carcinoma [J].
Cao, Linping ;
Wang, Qing ;
Hong, Jiawei ;
Han, Yuzhe ;
Zhang, Weichen ;
Zhong, Xun ;
Che, Yongqian ;
Ma, Yaqi ;
Du, Keyi ;
Wu, Dongyan ;
Pang, Tianxiao ;
Wu, Jian ;
Liang, Kewei .
CANCERS, 2023, 15 (05)
[3]   Adjuvant transarterial chemoembolization improves survival outcomes in hepatocellular carcinoma with microvascular invasion: A systematic review and meta-analysis [J].
Chen, Zhen-Hua ;
Zhang, Xiu-Ping ;
Zhou, Teng-Fei ;
Wang, Kang ;
Wang, Hang ;
Chai, Zong-Tao ;
Shi, Jie ;
Guo, Wei-Xing ;
Cheng, Shu-Qun .
EJSO, 2019, 45 (11) :2188-2196
[4]  
Dosovitskiy A., 2021, 9 INT C LEARN REPR I
[5]   Outcomes of radiofrequency ablation as first-line therapy for hepatocellular carcinoma less than 3 cm in potentially transplantable patients [J].
Doyle, Adam ;
Gorgen, Andre ;
Muaddi, Hala ;
Aravinthan, Aloysious D. ;
Issachar, Assaf ;
Mironov, Oleg ;
Zhang, Wei ;
Kachura, John ;
Beecroft, Robert ;
Cleary, Sean P. ;
Ghanekar, Anand ;
Greig, Paul D. ;
McGilvray, Ian D. ;
Selzner, Markus ;
Cattral, Mark S. ;
Grant, David R. ;
Lilly, Leslie B. ;
Selzner, Nazia ;
Renner, Eberhard L. ;
Sherman, Morris ;
Sapisochin, Gonzalo .
JOURNAL OF HEPATOLOGY, 2019, 70 (05) :866-873
[6]   A Multiparametric Fusion Deep Learning Model Based on DCE-MRI for Preoperative Prediction of Microvascular Invasion in Intrahepatic Cholangiocarcinoma [J].
Gao, Wenyu ;
Wang, Wentao ;
Song, Danjun ;
Wang, Kang ;
Lian, Danlan ;
Yang, Chun ;
Zhu, Kai ;
Zheng, Jiaping ;
Zeng, Mengsu ;
Rao, Sheng-xiang ;
Wang, Manning .
JOURNAL OF MAGNETIC RESONANCE IMAGING, 2022, 56 (04) :1029-1039
[7]   Adversarial attacks and adversarial robustness in computational pathology [J].
Ghaffari Laleh, Narmin ;
Truhn, Daniel ;
Veldhuizen, Gregory Patrick ;
Han, Tianyu ;
van Treeck, Marko ;
Buelow, Roman D. ;
Langer, Rupert ;
Dislich, Bastian ;
Boor, Peter ;
Schulz, Volkmar ;
Kather, Jakob Nikolas .
NATURE COMMUNICATIONS, 2022, 13 (01)
[8]  
He K., 2015, RESIDUAL LEARNING IM
[9]   Microvascular Invasion in Small-sized Hepatocellular Carcinoma: Significance for Outcomes Following Hepatectomy and Radiofrequency Ablation [J].
Imai, Katsunori ;
Yamashita, Yo-Ichi ;
Yusa, Toshihiko ;
Nakao, Yosuke ;
Itoyama, Rumi ;
Nakagawa, Shigeki ;
Okabe, Hirohisa ;
Chikamoto, Akira ;
Ishiko, Takatoshi ;
Baba, Hideo .
ANTICANCER RESEARCH, 2018, 38 (02) :1053-1060
[10]   Preoperative identification of microvascular invasion in hepatocellular carcinoma by XGBoost and deep learning [J].
Jiang, Yi-Quan ;
Cao, Su-E ;
Cao, Shilei ;
Chen, Jian-Ning ;
Wang, Guo-Ying ;
Shi, Wen-Qi ;
Deng, Yi-Nan ;
Cheng, Na ;
Ma, Kai ;
Zeng, Kai-Ning ;
Yan, Xi-Jing ;
Yang, Hao-Zhen ;
Huan, Wen-Jing ;
Tang, Wei-Min ;
Zheng, Yefeng ;
Shao, Chun-Kui ;
Wang, Jin ;
Yang, Yang ;
Chen, Gui-Hua .
JOURNAL OF CANCER RESEARCH AND CLINICAL ONCOLOGY, 2021, 147 (03) :821-833