Reviewing recent progress of liquid electrolyte chemistry for mitigating thermal runaway in lithium-ion batteries

被引:27
|
作者
Liu, Mengchuang [1 ,2 ]
Zeng, Ziqi [1 ]
Wu, Yuanke [1 ]
Zhong, Wei [1 ]
Lei, Sheng [1 ]
Cheng, Shijie [1 ]
Wen, Jinyu [1 ]
Xie, Jia [1 ]
机构
[1] Huazhong Univ Sci & Technol, Sch Elect & Elect Engn, State Key Lab Adv Electromagnet Technol, Wuhan 430074, Peoples R China
[2] Huazhong Univ Sci & Technol, Sch Chem & Chem Engn, Wuhan 430074, Peoples R China
关键词
Lithium-ion batteries; Functional liquid electrolytes; Thermal runaway; Safety; NON-FLAMMABLE HYDROFLUOROETHER; METHYL-NONAFLUOROBUTYL ETHER; CARBONATE-BASED ELECTROLYTE; LI-ION; NONFLAMMABLE ELECTROLYTE; FLUORINATED ELECTROLYTES; HIGH-SAFETY; TRIMETHYL PHOSPHATE; ELECTROCHEMICAL PROPERTIES; V-CLASS;
D O I
10.1016/j.ensm.2023.103133
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
In the past few decades, rapidly advanced lithium-ion batteries (LIBs) technologies have revolutionized our lives by powering portable electronic devices and transportation tools. But surged risks pertaining thermal runaway (TR) of LIBs have brought adverse concerns for their further applications, especially in grid-scale energy storage. As the blood of LIBs, electrolytes serve as the "initiator and accelerator" of substance-energy conversion reactions triggering TR. Therefore, executing the functionalized design for electrolytes to cut off these reactions has been recognized as a critical solution to mitigate TR. However, due to the lack of clarifying intricate relationship between mentioned reactions and TR, the targeted design of functional liquid electrolytes (LEs) is difficult in making effective progress. Herein, this review, for the first time, analyzes the affiliation-mechanisms, while summarizing achieved progress in functional LEs to enhance LIB safety. Meanwhile, the review puts forward the design principles of functional LEs to aiming at each type of unfavorable substance-energy conversion reactions.
引用
收藏
页数:21
相关论文
共 50 条
  • [21] Thermal Runaway of Lithium-Ion Batteries Triggered by Electromagnetic Interference
    Dubois, Eric Ravindranath
    Kherbouchi, Hocine
    Bosson, Joel
    IEEE TRANSACTIONS ON ELECTROMAGNETIC COMPATIBILITY, 2020, 62 (05) : 2096 - 2100
  • [22] Applied method to model the thermal runaway of lithium-ion batteries
    Lalinde, Inaki
    Berrueta, Alberto
    Sanchis, Pablo
    Ursua, Alfredo
    2021 21ST IEEE INTERNATIONAL CONFERENCE ON ENVIRONMENT AND ELECTRICAL ENGINEERING AND 2021 5TH IEEE INDUSTRIAL AND COMMERCIAL POWER SYSTEMS EUROPE (EEEIC/I&CPS EUROPE), 2021,
  • [23] Review on Thermal Runaway of Lithium-Ion Batteries for Electric Vehicles
    Liubin Song
    Youhang Zheng
    Zhongliang Xiao
    Cheng Wang
    Tianyuan Long
    Journal of Electronic Materials, 2022, 51 : 30 - 46
  • [24] Advances and challenges in thermal runaway modeling of lithium-ion batteries
    Wang, Gongquan
    Ping, Ping
    Kong, Depeng
    Peng, Rongqi
    He, Xu
    Zhang, Yue
    Dai, Xinyi
    Wen, Jennifer
    INNOVATION, 2024, 5 (04):
  • [25] Monitoring and diagnostic approaches for thermal runaway in lithium-ion batteries
    Xu, Zengheng
    Zhou, Xiaoyan
    Fu, Jialong
    Li, Qiutong
    Tan, Zejie
    Fan, Xiaopeng
    Wang, Zhiming
    Tian, Bing
    Guo, Xin
    CHINESE SCIENCE BULLETIN-CHINESE, 2023, 68 (33): : 4501 - 4516
  • [26] Modeling thermal runaway of lithium-ion batteries with a venting process
    He, C. X.
    Yue, Q. L.
    Chen, Q.
    Zhao, T. S.
    APPLIED ENERGY, 2022, 327
  • [27] A novel thermal runaway warning method of lithium-ion batteries
    Xiong, Rui
    Wang, Chenxu
    Sun, Fengchun
    iEnergy, 2023, 2 (03): : 165 - 171
  • [28] Review on Thermal Runaway of Lithium-Ion Batteries for Electric Vehicles
    Song, Liubin
    Zheng, Youhang
    Xiao, Zhongliang
    Wang, Cheng
    Long, Tianyuan
    JOURNAL OF ELECTRONIC MATERIALS, 2022, 51 (01) : 30 - 46
  • [29] A review on thermal runaway warning technology for lithium-ion batteries
    Hu, Dunan
    Huang, Sheng
    Wen, Zhen
    Gu, Xiuquan
    Lu, Jianguo
    RENEWABLE & SUSTAINABLE ENERGY REVIEWS, 2024, 206
  • [30] Modelling and simulation of thermal runaway phenomenon in lithium-ion batteries
    Alshammari, Ali
    Al-Obaidi, Mudhar
    Staggs, John
    ASIA-PACIFIC JOURNAL OF CHEMICAL ENGINEERING, 2024, 19 (02)