A generic formation mechanism of ultralight dark matter solar halos

被引:20
作者
Budker, Dmitry [1 ,2 ,3 ]
Eby, Joshua [4 ]
Gorghetto, Marco [5 ]
Jiang, Minyuan [5 ]
Perez, Gilad [5 ]
机构
[1] Johannes Gutenberg Univ Mainz, D-55128 Mainz, Germany
[2] GSI Helmholtzzentrum Schwerionenforsch, Helmholtz Inst, D-55128 Mainz, Germany
[3] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA
[4] Univ Tokyo, Inst Adv Study, Kavli Inst Phys & Math Universe WPI, Kashiwa, Chiba 2778583, Japan
[5] Weizmann Inst Sci, Dept Particle Phys & Astrophys, Herzl St 234, IL-761001 Rehovot, Israel
来源
JOURNAL OF COSMOLOGY AND ASTROPARTICLE PHYSICS | 2023年 / 12期
关键词
dark matter theory; axions; particle physics - cosmology connection; dark matter simulations; AXION; INVARIANCE; STARS;
D O I
10.1088/1475-7516/2023/12/021
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
As-yet undiscovered light bosons may constitute all or part of the dark matter (DM) of our Universe, and are expected to have (weak) self-interactions. We show that the quartic self-interactions generically induce the capture of dark matter from the surrounding halo by external gravitational potentials such as those of stars, including the Sun. This leads to the subsequent formation of dark matter bound states supported by such external potentials, resembling gravitational atoms (e.g. a solar halo around our own Sun). Their growth is governed by the ratio xi(foc) equivalent to lambda(dB)/R-* between the de Broglie wavelength of the incoming DM waves, lambda(dB), and the radius of the ground state R-*. For xi(foc) less than or similar to 1, the gravitational atom grows to an (underdense) steady state that balances the capture of particles and the inverse (stripping) process. For xi(foc) greater than or similar to 1, a significant gravitational-focusing effect leads to exponential accumulation of mass from the galactic DM halo into the gravitational atom. For instance, a dark matter axion with mass of the order of 10(-14) eV and decay constant between 10(7) and 10(8) GeV would form a dense halo around the Sun on a timescale comparable to the lifetime of the Solar System, leading to a local DM density at the position of the Earth O(10(4)) times larger than that expected in the standard halo model. For attractive self-interactions, after its formation, the gravitational atom is destabilized at a large density, which leads to its collapse; this is likely to be accompanied by emission of relativistic bosons (a 'Bosenova').
引用
收藏
页数:68
相关论文
共 152 条
  • [21] Looking for ultralight dark matter near supermassive black holes
    Bar, Nitsan
    Blum, Kfir
    Lacroix, Thomas
    Panci, Paolo
    [J]. JOURNAL OF COSMOLOGY AND ASTROPARTICLE PHYSICS, 2019, (07):
  • [22] Black hole superradiance of self-interacting scalar fields
    Baryakhtar, Masha
    Galanis, Marios
    Lasenby, Robert
    Simon, Olivier
    [J]. PHYSICAL REVIEW D, 2021, 103 (09)
  • [23] Can dark matter be a Bose-Einstein condensate?
    Bohmer, C. G.
    Harko, T.
    [J]. JOURNAL OF COSMOLOGY AND ASTROPARTICLE PHYSICS, 2007, (06):
  • [24] ON THE LOCAL DARK MATTER DENSITY
    Bovy, Jo
    Tremaine, Scott
    [J]. ASTROPHYSICAL JOURNAL, 2012, 756 (01)
  • [25] Superradiant axion clouds around asteroid-mass primordial black holes
    Branco, Nuno P.
    Ferreira, Ricardo Z.
    Rosa, Joao G.
    [J]. JOURNAL OF COSMOLOGY AND ASTROPARTICLE PHYSICS, 2023, (04):
  • [26] COLD BOSE STARS
    BREIT, JD
    GUPTA, S
    ZAKS, A
    [J]. PHYSICS LETTERS B, 1984, 140 (5-6) : 329 - 332
  • [27] Proca stars: Gravitating Bose-Einstein condensates of massive spin 1 particles
    Brito, Richard
    Cardoso, Vitor
    Herdeiro, Carlos A. R.
    Radu, Eugen
    [J]. PHYSICS LETTERS B, 2016, 752 : 291 - 295
  • [28] Proposal for a Cosmic Axion Spin Precession Experiment (CASPEr)
    Budker, Dmitry
    Graham, Peter W.
    Ledbetter, Micah
    Rajendran, Surjeet
    Sushkov, Alexander O.
    [J]. PHYSICAL REVIEW X, 2014, 4 (02):
  • [29] Detecting the stimulated decay of axions at radio frequencies
    Caputo, Andrea
    Regis, Marco
    Taoso, Marco
    Witte, Samuel J.
    [J]. JOURNAL OF COSMOLOGY AND ASTROPARTICLE PHYSICS, 2019, (03):
  • [30] Constraints on anharmonic corrections of fuzzy dark matter
    Cembranos, J. A. R.
    Maroto, A. L.
    Nunez Jareno, S. J.
    Villarrubia-Rojo, H.
    [J]. JOURNAL OF HIGH ENERGY PHYSICS, 2018, (08):