Underwater Image Super-Resolution via Dual-aware Integrated Network

被引:5
作者
Shi, Aiye [1 ]
Ding, Haimin [1 ]
机构
[1] Hohai Univ, Coll Comp & Informat, Nanjing 211100, Peoples R China
来源
APPLIED SCIENCES-BASEL | 2023年 / 13卷 / 24期
基金
英国科研创新办公室;
关键词
underwater image; super-resolution; transformer; multi-scale; CONVOLUTIONAL NETWORK; ENHANCEMENT;
D O I
10.3390/app132412985
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Underwater scenes are often affected by issues such as blurred details, color distortion, and low contrast, which are primarily caused by wavelength-dependent light scattering; these factors significantly impact human visual perception. Convolutional neural networks (CNNs) have recently displayed very promising performance in underwater super-resolution (SR). However, the nature of CNN-based methods is local operations, making it difficult to reconstruct rich features. To solve these problems, we present an efficient and lightweight dual-aware integrated network (DAIN) comprising a series of dual-aware enhancement modules (DAEMs) for underwater SR tasks. In particular, DAEMs primarily consist of a multi-scale color correction block (MCCB) and a swin transformer layer (STL). These components work together to incorporate both local and global features, thereby enhancing the quality of image reconstruction. MCCBs can use multiple channels to process the different colors of underwater images to restore the uneven underwater light decay-affected real color and details of the images. The STL captures long-range dependencies and global contextual information, enabling the extraction of neglected features in underwater images. Experimental results demonstrate significant enhancements with a DAIN over conventional SR methods.
引用
收藏
页数:16
相关论文
共 50 条
  • [1] Dual-aware transformer network for single-image super-resolution
    Luo, Zhonghua
    Wang, Li
    Wang, Fengzhou
    Ruan, Yinglan
    JOURNAL OF ELECTRONIC IMAGING, 2023, 32 (02)
  • [2] Underwater image super-resolution and enhancement via progressive frequency-interleaved network?
    Wang, Li
    Xu, Lizhong
    Tian, Wei
    Zhang, Yunfei
    Feng, Hui
    Chen, Zhe
    JOURNAL OF VISUAL COMMUNICATION AND IMAGE REPRESENTATION, 2022, 86
  • [3] Resolution-Aware Network for Image Super-Resolution
    Wang, Yifan
    Wang, Lijun
    Wang, Hongyu
    Li, Peihua
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 2019, 29 (05) : 1259 - 1269
  • [4] Underwater Image Super-resolution Using SRCNN
    Ooyama, Shinnosuke
    Lu, Huimin
    Kamiya, Tohru
    Serikawa, Seiichi
    INTERNATIONAL SYMPOSIUM ON ARTIFICIAL INTELLIGENCE AND ROBOTICS 2021, 2021, 11884
  • [5] Attention-guided hybrid transformer-convolutional neural network for underwater image super-resolution
    Zhan, Zihan
    Li, Chaofeng
    Zhang, Yuqi
    JOURNAL OF ELECTRONIC IMAGING, 2024, 33 (01)
  • [6] Image super-resolution via dynamic network
    Tian, Chunwei
    Zhang, Xuanyu
    Zhang, Qi
    Yang, Mingming
    Ju, Zhaojie
    CAAI TRANSACTIONS ON INTELLIGENCE TECHNOLOGY, 2024, 9 (04) : 837 - 849
  • [7] Underwater Image Super-Resolution by Descattering and Fusion
    Lu, Huimin
    Li, Yujie
    Nakashima, Shota
    Kim, Hyongseop
    Serikawa, Seiichi
    IEEE ACCESS, 2017, 5 : 670 - 679
  • [8] Remote Sensing Image Super-Resolution via Dual-Resolution Network Based on Connected Attention Mechanism
    Zhang, Xiangrong
    Li, Zhenyu
    Zhang, Tianyang
    Liu, Fengsheng
    Tang, Xu
    Chen, Puhua
    Jiao, Licheng
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2022, 60
  • [9] A Dual Transformer Super-Resolution Network for Improving the Definition of Vibration Image
    Zhu, Yang
    Wang, Sen
    Zhang, Yinhui
    He, Zifen
    Wang, Qingjian
    IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2023, 72
  • [10] Image super-resolution via deep residual network
    Duan, Yakang
    Luo, Lin
    Zhang, Yu
    Zhu, Hongna
    ELEVENTH INTERNATIONAL CONFERENCE ON INFORMATION OPTICS AND PHOTONICS (CIOP 2019), 2019, 11209