Prediction of atrial fibrillation from at-home single-lead ECG signals without arrhythmias

被引:20
作者
Gadaleta, Matteo [1 ]
Harrington, Patrick [2 ]
Barnhill, Eric [2 ]
Hytopoulos, Evangelos [2 ]
Turakhia, Mintu P. [2 ,3 ]
Steinhubl, Steven R. [1 ,4 ]
Quer, Giorgio [1 ]
机构
[1] Scripps Res Inst, La Jolla, CA 92037 USA
[2] iRhythm Technol, San Francisco, CA USA
[3] Stanford Univ, Sch Med, Stanford, CA USA
[4] Purdue Univ, Weldon Sch Biomed Engn, W Lafayette, IN 47907 USA
基金
美国国家卫生研究院;
关键词
RHYTHM MONITORING STRATEGIES; HEART RHYTHM; RISK; STROKE; TERM;
D O I
10.1038/s41746-023-00966-w
中图分类号
R19 [保健组织与事业(卫生事业管理)];
学科分类号
摘要
Early identification of atrial fibrillation (AF) can reduce the risk of stroke, heart failure, and other serious cardiovascular outcomes. However, paroxysmal AF may not be detected even after a two-week continuous monitoring period. We developed a model to quantify the risk of near-term AF in a two-week period, based on AF-free ECG intervals of up to 24 h from 459,889 patch-based ambulatory single-lead ECG (modified lead II) recordings of up to 14 days. A deep learning model was used to integrate ECG morphology data with demographic and heart rhythm features toward AF prediction. Observing a 1-day AF-free ECG recording, the model with deep learning features produced the most accurate prediction of near-term AF with an area under the curve AUC = 0.80 (95% confidence interval, CI = 0.79-0.81), significantly improving discrimination compared to demographic metrics alone (AUC 0.67; CI = 0.66-0.68). Our model was able to predict incident AF over a two-week time frame with high discrimination, based on AF-free single-lead ECG recordings of various lengths. Application of the model may enable a digital strategy for improving diagnostic capture of AF by risk stratifying individuals with AF-negative ambulatory monitoring for prolonged or recurrent monitoring, potentially leading to more rapid initiation of treatment.
引用
收藏
页数:9
相关论文
共 35 条
  • [1] Multimodal biomedical AI
    Acosta, Julian N.
    Falcone, Guido J.
    Rajpurkar, Pranav
    Topol, Eric J.
    [J]. NATURE MEDICINE, 2022, 28 (09) : 1773 - 1784
  • [2] An artificial intelligence-enabled ECG algorithm for the identification of patients with atrial fibrillation during sinus rhythm: a retrospective analysis of outcome prediction
    Attia, Zachi, I
    Noseworthy, Peter A.
    Lopez-Jimenez, Francisco
    Asirvatham, Samuel J.
    Deshmukh, Abhishek J.
    Gersh, Bernard J.
    Carter, Rickey E.
    Yao, Xiaoxi
    Rabinstein, Alejandro A.
    Erickson, Brad J.
    Kapa, Suraj
    Friedman, Paul A.
    [J]. LANCET, 2019, 394 (10201) : 861 - 867
  • [3] Atrial fibrillation risk prediction from the 12-lead electrocardiogram using digital biomarkers and deep representation learning
    Biton, Shany
    Gendelman, Sheina
    Ribeiro, Antonio H.
    Miana, Gabriela
    Moreira, Carla
    Ribeiro, Antonio Luiz P.
    Behar, Joachim A.
    [J]. EUROPEAN HEART JOURNAL - DIGITAL HEALTH, 2021, 2 (04): : 576 - 585
  • [4] AN ANALYSIS OF TRANSFORMATIONS
    BOX, GEP
    COX, DR
    [J]. JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-STATISTICAL METHODOLOGY, 1964, 26 (02) : 211 - 252
  • [5] Camm AJ, 2010, EUR HEART J, V31, P2369, DOI [10.1093/eurheartj/ehq278, 10.1093/europace/euq350]
  • [6] Diederichsen SZ, 2020, CIRCULATION, V141, P1510, DOI [10.1161/CIRCULATIONAHA.119.044407, 10.1161/circulationaha.119.044407]
  • [7] On the Effectiveness of Deep Representation Learning: The Atrial Fibrillation Case
    Gadaleta, Matteo
    Rossi, Michele
    Topol, Eric J.
    Steinhubl, Steven R.
    Quer, Giorgio
    [J]. COMPUTER, 2019, 52 (11) : 18 - 29
  • [8] Screening for Atrial Fibrillation in the Older Population A Randomized Clinical Trial
    Gladstone, David J.
    Wachter, Rolf
    Schmalstieg-Bahr, Katharina
    Quinn, F. Russell
    Hummers, Eva
    Ivers, Noah
    Marsden, Tamara
    Thornton, Andrea
    Djuric, Angie
    Suerbaum, Johanna
    von Gruenhagen, Doris
    McIntyre, William F.
    Benz, Alexander P.
    Wong, Jorge A.
    Merali, Fatima
    Henein, Sam
    Nichol, Chris
    Connolly, Stuart J.
    Healey, Jeff S.
    [J]. JAMA CARDIOLOGY, 2021, 6 (05) : 558 - 567
  • [9] Hochreiter S, 1997, NEURAL COMPUT, V9, P1735, DOI [10.1162/neco.1997.9.8.1735, 10.1162/neco.1997.9.1.1, 10.1007/978-3-642-24797-2]
  • [10] A Comprehensive Explanation Framework for Biomedical Time Series Classification
    Ivaturi, Praharsh
    Gadaleta, Matteo
    Pandey, Amitabh C.
    Pazzani, Michael
    Steinhubl, Steven R.
    Quer, Giorgio
    [J]. IEEE JOURNAL OF BIOMEDICAL AND HEALTH INFORMATICS, 2021, 25 (07) : 2398 - 2408