Bound estimates of the eigenvalues of matrix polynomials

被引:1
|
作者
Monga, Z. B. [1 ]
Shah, W. M. [1 ]
机构
[1] Cent Univ Kashmir, Dept Math, Ganderbal 191201, India
关键词
Matrix polynomial; Eigenvalue; Cauchy-type bound; LACUNARY STATISTICAL CONVERGENCE; ORDER ALPHA; EQUIVALENT SEQUENCES;
D O I
10.1007/s41478-023-00633-z
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper we prove some results concerning the bound estimates of the eigenvalues of a matrix polynomial. This in particular include the results earlier proved by Dehmer and Killian [On bounds for the zeros of univariate polynomials,World Academy of Science, Engineering and Technology, 26 (2007)] for the location of zeros of polynomials.
引用
收藏
页码:2973 / 2983
页数:11
相关论文
共 50 条
  • [1] Bound estimates of the eigenvalues of matrix polynomials
    Z. B. Monga
    W. M. Shah
    The Journal of Analysis, 2023, 31 (4) : 2973 - 2983
  • [2] On the bounds of eigenvalues of matrix polynomials
    W. M. Shah
    Sooraj Singh
    The Journal of Analysis, 2023, 31 : 821 - 829
  • [3] ON THE LOCATION OF EIGENVALUES OF MATRIX POLYNOMIALS
    Cong-Trinh Le
    Thi-Hoa-Binh Du
    Tran-Duc Nguyen
    OPERATORS AND MATRICES, 2019, 13 (04): : 937 - 954
  • [4] Bounds for the Eigenvalues of Matrix Polynomials with Commuting Coefficients
    Bani-Domi, Watheq
    Kittaneh, Fuad
    Mustafa, Rawan
    RESULTS IN MATHEMATICS, 2023, 78 (03)
  • [5] ON THE BOUNDS OF THE EIGENVALUES OF MATRIX POLYNOMIALS
    Shah, Wali Mohammad
    Monga, Zahid Bashir
    KOREAN JOURNAL OF MATHEMATICS, 2023, 31 (02): : 145 - 152
  • [6] Matrix polynomials with specified eigenvalues
    Karow, Michael
    Mengi, Emre
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2015, 466 : 457 - 482
  • [7] GERSHGORIN TYPE SETS FOR EIGENVALUES OF MATRIX POLYNOMIALS
    Michailidou, Christina
    Psarrakos, Panayiotis
    ELECTRONIC JOURNAL OF LINEAR ALGEBRA, 2018, 34 : 652 - 674
  • [8] Bounds for the Eigenvalues of Matrix Polynomials with Commuting Coefficients
    Watheq Bani-Domi
    Fuad Kittaneh
    Rawan Mustafa
    Results in Mathematics, 2023, 78
  • [9] On the bounds of eigenvalues of matrix polynomials
    Shah, W. M.
    Singh, Sooraj
    JOURNAL OF ANALYSIS, 2023, 31 (01) : 821 - 829
  • [10] Bounds for eigenvalues of matrix polynomials
    Higham, NJ
    Tisseur, F
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2003, 358 : 5 - 22