Structural and functional investigation of GajB protein in Gabija anti-phage defense

被引:4
作者
Oh, Hyejin [1 ]
Koo, Jasung [1 ]
An, So Young [1 ,2 ]
Hong, Sung-Hyun [1 ,2 ]
Suh, Jeong-Yong [1 ,2 ]
Bae, Euiyoung [1 ,2 ]
机构
[1] Seoul Natl Univ, Dept Agr Biotechnol, Seoul 08826, South Korea
[2] Seoul Natl Univ, Res Inst Agr & Life Sci, Seoul 08826, South Korea
关键词
ESCHERICHIA-COLI UVRD; OLD FAMILY NUCLEASES; SINGLE-STRANDED-DNA; INITIATOR PROTEIN; HELICASE-II; CRYSTAL-STRUCTURES; ATP HYDROLYSIS; PCRA HELICASE; GENE-PRODUCT; REP HELICASE;
D O I
10.1093/nar/gkad951
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Bacteriophages (phages) are viruses that infect bacteria and archaea. To fend off invading phages, the hosts have evolved a variety of anti-phage defense mechanisms. Gabija is one of the most abundant prokaryotic antiviral systems and consists of two proteins, GajA and GajB. GajA has been characterized experimentally as a sequence-specific DNA endonuclease. Although GajB was previously predicted to be a UvrD-like helicase, its function is unclear. Here, we report the results of structural and functional analyses of GajB. The crystal structure of GajB revealed a UvrD-like domain architecture, including two RecA-like core and two accessory subdomains. However, local structural elements that are important for the helicase function of UvrD are not conserved in GajB. In functional assays, GajB did not unwind or bind various types of DNA substrates. We demonstrated that GajB interacts with GajA to form a heterooctameric Gabija complex, but GajB did not exhibit helicase activity when bound to GajA. These results advance our understanding of the molecular mechanism underlying Gabija anti-phage defense and highlight the role of GajB as a component of a multi-subunit antiviral complex in bacteria. Graphical Abstract
引用
收藏
页码:11941 / 11951
页数:11
相关论文
共 75 条
[1]   PHENIX: a comprehensive Python']Python-based system for macromolecular structure solution [J].
Adams, Paul D. ;
Afonine, Pavel V. ;
Bunkoczi, Gabor ;
Chen, Vincent B. ;
Davis, Ian W. ;
Echols, Nathaniel ;
Headd, Jeffrey J. ;
Hung, Li-Wei ;
Kapral, Gary J. ;
Grosse-Kunstleve, Ralf W. ;
McCoy, Airlie J. ;
Moriarty, Nigel W. ;
Oeffner, Robert ;
Read, Randy J. ;
Richardson, David C. ;
Richardson, Jane S. ;
Terwilliger, Thomas C. ;
Zwart, Peter H. .
ACTA CRYSTALLOGRAPHICA SECTION D-STRUCTURAL BIOLOGY, 2010, 66 :213-221
[2]   An oligomeric form of E-coli UvrD is required for optimal helicase activity [J].
Ail, JA ;
Maluf, NK ;
Lohman, TM .
JOURNAL OF MOLECULAR BIOLOGY, 1999, 293 (04) :815-834
[3]   BASIC LOCAL ALIGNMENT SEARCH TOOL [J].
ALTSCHUL, SF ;
GISH, W ;
MILLER, W ;
MYERS, EW ;
LIPMAN, DJ .
JOURNAL OF MOLECULAR BIOLOGY, 1990, 215 (03) :403-410
[4]  
Antine S. P., 2023, bioRxiv, p2023.05.01.538945, DOI [10.1101/2023.05.01.538945, DOI 10.1101/2023.05.01.538945]
[5]   Toprim - a conserved catalytic domain in type IA and II topoisomerases, DnaG-type primases, OLD family nucleases and RecR proteins [J].
Aravind, L ;
Leipe, DD ;
Koonin, EV .
NUCLEIC ACIDS RESEARCH, 1998, 26 (18) :4205-4213
[6]   HYPER-RECOMBINATION IN UVRD MUTANTS OF ESCHERICHIA-COLI-K-12 [J].
ARTHUR, HM ;
LLOYD, RG .
MOLECULAR & GENERAL GENETICS, 1980, 180 (01) :185-191
[7]   Structural basis for broad anti-phage immunity by DISARM [J].
Bravo, Jack P. K. ;
Aparicio-Maldonado, Cristian ;
Nobrega, Franklin L. ;
Brouns, Stan J. J. ;
Taylor, David W. .
NATURE COMMUNICATIONS, 2022, 13 (01)
[8]   UvrD-dependent replication of rolling-circle plasmids in Escherichia coli [J].
Bruand, C ;
Ehrlich, SD .
MOLECULAR MICROBIOLOGY, 2000, 35 (01) :204-210
[9]   A Gel-Based Assay for Probing Protein Translocation on dsDNA [J].
Brugger, Christiane ;
Deaconescu, Alexandra M. .
BIO-PROTOCOL, 2021, 11 (14)
[10]   INVOLVEMENT OF HELICASE-II (UVRD GENE-PRODUCT) AND DNA-POLYMERASE-I IN EXCISION MEDIATED BY THE UVRABC PROTEIN COMPLEX [J].
CARON, PR ;
KUSHNER, SR ;
GROSSMAN, L .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1985, 82 (15) :4925-4929