Recent progress in transition-metal-oxide-based electrocatalysts for the oxygen evolution reaction in natural seawater splitting: A critical review

被引:175
|
作者
Chen, Meng [1 ]
Kitiphatpiboon, Nutthaphak [1 ]
Feng, Changrui [1 ]
Abudula, Abuliti [1 ]
Ma, Yufei [3 ]
Guan, Guoqing [1 ,2 ]
机构
[1] Hirosaki Univ, Sch Sci & Technol, 1 Bunkyocho, Hirosaki 0368560, Japan
[2] Hirosaki Univ, Inst Reg Innovat IRI, Energy Convers Engn Lab, 3 Bunkyocho, Hirosaki 0368561, Japan
[3] Hebei Normal Univ, Coll Chem & Mat Sci, Shijiazhuang 050025, Hebei, Peoples R China
来源
ESCIENCE | 2023年 / 3卷 / 02期
关键词
Seawater splitting; Hydrogen production; Oxygen evolution reaction; Chlorine evolution reaction; Metal -oxide -based catalysts; High current density; COMPETING CHLORINE; DESIGN CRITERIA; ANODES; WATER; ELECTROLYSIS; HYDROGEN; CO3O4; MN; (OXY)HYDROXIDES; DECOMPOSITION;
D O I
10.1016/j.esci.2023.100111
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
Direct electrolytic splitting of seawater for the production of H2 using ocean energy is a promising technology that can help achieve carbon neutrality. However, owing to the high concentrations of chlorine ions in seawater, the chlorine evolution reaction always competes with the oxygen evolution reaction (OER) at the anode, and chloride corrosion occurs on both the anode and cathode. Thus, effective electrocatalysts with high selectivity toward the OER and excellent resistance to chloride corrosion should be developed. In this critical review, we focus on the prospects of state-of-the-art metal-oxide electrocatalysts, including noble metal oxides, non-noble metal oxides and their compounds, and spinel- and perovskite-type oxides, for seawater splitting. We elucidate their chemical properties, excellent OER selectivity, outstanding anti-chlorine-corrosion performance, and reaction mechanisms. In particular, we review metal oxides that operate at high current densities, near industrial application levels, based on special catalyst design strategies.
引用
收藏
页数:16
相关论文
共 50 条
  • [21] Research progress on layered metal oxide electrocatalysts for an efficient oxygen evolution reaction
    Li, Lei
    Liu, Yaoda
    Chen, Ya
    Zhai, Wenfang
    Dai, Zhengfei
    DALTON TRANSACTIONS, 2024, 53 (21) : 8872 - 8886
  • [22] Recent advances in transition metal phosphide-based heterostructure electrocatalysts for the oxygen evolution reaction
    Wu, Wangzhi
    Luo, Shuiping
    Huang, Yujin
    He, Huibing
    Shen, Pei Kang
    Zhu, Jinliang
    MATERIALS CHEMISTRY FRONTIERS, 2024, 8 (04) : 1064 - 1083
  • [23] Regulation Strategy of Transition Metal Oxide-Based Electrocatalysts for Enhanced Oxygen Evolution Reaction
    Zhang, Yuanyuan
    Fu, Qiang
    Song, Bo
    Xu, Ping
    ACCOUNTS OF MATERIALS RESEARCH, 2022, 3 (10): : 1088 - 1100
  • [24] Understanding the Origin of Reconstruction in Transition Metal Oxide Oxygen Evolution Reaction Electrocatalysts
    Zou, Anqi
    Tang, Ying
    Wu, Chao
    Li, Junhua
    Meng, Haoyan
    Wang, Zhen
    Ma, Yifan
    An, Hang
    Zhong, Haoyin
    Zhang, Qi
    Zhang, Xin
    Xue, Junmin
    Wang, Xiaopeng
    Wu, Jiagang
    CHEMSUSCHEM, 2024, 17 (02)
  • [25] Recent progress on transition metal-based amorphous ribbons as electrocatalysts for water splitting
    Li, Tianjing
    Sun, Hainan
    Dan, Zhenhua
    Zhou, Lian
    INTERNATIONAL JOURNAL OF MINERALS METALLURGY AND MATERIALS, 2025, 32 (04) : 757 - 777
  • [26] Recent progress on transition metal-based amorphous ribbons as electrocatalysts for water splitting
    Tianjing Li
    Hainan Sun
    Zhenhua Dan
    Lian Zhou
    International Journal of Minerals,Metallurgy and Materials, 2025, (04) : 757 - 777
  • [27] Recent progress in noble-metal-free electrocatalysts for alkaline oxygen evolution reaction
    Tan, Deming
    Xiong, Hao
    Zhang, Tao
    Fan, Xuelin
    Wang, Junjie
    Xu, Fei
    FRONTIERS IN CHEMISTRY, 2022, 10
  • [28] Recent Progress on Bimetallic-Based Spinels as Electrocatalysts for the Oxygen Evolution Reaction
    Olowoyo, Joshua O.
    Kriek, Roelof J.
    SMALL, 2022, 18 (41)
  • [29] Electrocatalysts Based on Transition Metal Borides and Borates for the Oxygen Evolution Reaction
    Cui, Liang
    Zhang, Wenxiu
    Zheng, Rongkun
    Liu, Jingquan
    CHEMISTRY-A EUROPEAN JOURNAL, 2020, 26 (51) : 11661 - 11672
  • [30] Recent Progress of Transition Metal Compounds as Electrocatalysts for Electrocatalytic Water Splitting
    Yu, Yongren
    Wang, Tiantian
    Zhang, Yue
    You, Junhua
    Hu, Fang
    Zhang, Hangzhou
    CHEMICAL RECORD, 2023, 23 (11):