Recent progress in transition-metal-oxide-based electrocatalysts for the oxygen evolution reaction in natural seawater splitting: A critical review

被引:229
作者
Chen, Meng [1 ]
Kitiphatpiboon, Nutthaphak [1 ]
Feng, Changrui [1 ]
Abudula, Abuliti [1 ]
Ma, Yufei [3 ]
Guan, Guoqing [1 ,2 ]
机构
[1] Hirosaki Univ, Sch Sci & Technol, 1 Bunkyocho, Hirosaki 0368560, Japan
[2] Hirosaki Univ, Inst Reg Innovat IRI, Energy Convers Engn Lab, 3 Bunkyocho, Hirosaki 0368561, Japan
[3] Hebei Normal Univ, Coll Chem & Mat Sci, Shijiazhuang 050025, Hebei, Peoples R China
来源
ESCIENCE | 2023年 / 3卷 / 02期
关键词
Seawater splitting; Hydrogen production; Oxygen evolution reaction; Chlorine evolution reaction; Metal -oxide -based catalysts; High current density; COMPETING CHLORINE; DESIGN CRITERIA; ANODES; WATER; ELECTROLYSIS; HYDROGEN; CO3O4; MN; (OXY)HYDROXIDES; DECOMPOSITION;
D O I
10.1016/j.esci.2023.100111
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
Direct electrolytic splitting of seawater for the production of H2 using ocean energy is a promising technology that can help achieve carbon neutrality. However, owing to the high concentrations of chlorine ions in seawater, the chlorine evolution reaction always competes with the oxygen evolution reaction (OER) at the anode, and chloride corrosion occurs on both the anode and cathode. Thus, effective electrocatalysts with high selectivity toward the OER and excellent resistance to chloride corrosion should be developed. In this critical review, we focus on the prospects of state-of-the-art metal-oxide electrocatalysts, including noble metal oxides, non-noble metal oxides and their compounds, and spinel- and perovskite-type oxides, for seawater splitting. We elucidate their chemical properties, excellent OER selectivity, outstanding anti-chlorine-corrosion performance, and reaction mechanisms. In particular, we review metal oxides that operate at high current densities, near industrial application levels, based on special catalyst design strategies.
引用
收藏
页数:16
相关论文
共 107 条
[1]   Investigation of the catalytic activity of nano-sized CuO, Co3O4 and CuCo2O4 powders on thermal decomposition of ammonium perchlorate [J].
Alizadeh-Gheshlaghi, Ebrahim ;
Shaabani, Behrouz ;
Khodayari, Ali ;
Azizian-Kalandaragh, Yashar ;
Rahimi, Rahmatollah .
POWDER TECHNOLOGY, 2012, 217 :330-339
[2]   Solar absorptance of copper-cobalt oxide thin film coatings with nano-size, grain-like morphology: Optimization and synchrotron radiation XPS studies [J].
Amri, Amun ;
Duan, XiaoFei ;
Yin, Chun-Yang ;
Jiang, Zhong-Tao ;
Rahman, M. Mahbubur ;
Pryor, Trevor .
APPLIED SURFACE SCIENCE, 2013, 275 :127-135
[3]   N2O catalytic decomposition over nano-sized particles of Co-substituted Fe3O4 substrates [J].
Amrousse, Rachid ;
Tsutsumi, Akimasa ;
Bachar, Ahmed ;
Lahcene, Driss .
APPLIED CATALYSIS A-GENERAL, 2013, 450 :253-260
[4]   ELECTRODES FOR GENERATION OF HYDROGEN AND OXYGEN FROM SEAWATER [J].
BENNETT, JE .
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 1980, 5 (04) :401-408
[5]   Selective anodes for seawater splitting via functionalization of manganese oxides by a plasma-assisted process [J].
Bigiani, Lorenzo ;
Barreca, Davide ;
Gasparotto, Alberto ;
Andreu, Teresa ;
Verbeeck, Johan ;
Sada, Cinzia ;
Modin, Evgeny ;
Lebedev, Oleg I. ;
Morante, Juan Ramon ;
Maccato, Chiara .
APPLIED CATALYSIS B-ENVIRONMENTAL, 2021, 284
[6]   Nanomaterial by Sol-Gel Method: Synthesis and Application [J].
Bokov, Dmitry ;
Turki Jalil, Abduladheem ;
Chupradit, Supat ;
Suksatan, Wanich ;
Javed Ansari, Mohammad ;
Shewael, Iman H. ;
Valiev, Gabdrakhman H. ;
Kianfar, Ehsan .
ADVANCES IN MATERIALS SCIENCE AND ENGINEERING, 2021, 2021
[7]   Tuning the Electrocatalytic Water Oxidation Properties of AB2O4 Spinel Nanocrystals: A (Li, Mg, Zn) and B (Mn, Co) Site Variants of LiMn2O4 [J].
Cady, Clyde W. ;
Gardner, Graeme ;
Maron, Zachary O. ;
Retuerto, Maria ;
Go, Yong Bok ;
Segan, Shreeda ;
Greenblat, Martha ;
Dismukes, G. Charles .
ACS CATALYSIS, 2015, 5 (06) :3403-3410
[8]   Zn-VOx-Co nanosheets with amorphous/crystalline heterostructure for highly efficient hydrogen evolution reaction [J].
Chen, Meng ;
Liu, Jianbin ;
Kitiphatpiboon, Nutthaphak ;
Li, Xiumin ;
Wang, Junli ;
Hao, Xiaogang ;
Abudula, Abuliti ;
Ma, Yufei ;
Guan, Guoqing .
CHEMICAL ENGINEERING JOURNAL, 2022, 432
[9]   Atomic scale insights into structure instability and decomposition pathway of methylammonium lead iodide perovskite [J].
Chen, Shulin ;
Zhang, Xiaowei ;
Zhao, Jinjin ;
Zhang, Ying ;
Kong, Guoli ;
Li, Qian ;
Li, Ning ;
Yu, Yue ;
Xu, Ningan ;
Zhang, Jingmin ;
Liu, Kaihui ;
Zhao, Qing ;
Cao, Jian ;
Feng, Jicai ;
Li, Xinzheng ;
Qi, Junlei ;
Yu, Dapeng ;
Li, Jiangyu ;
Gao, Peng .
NATURE COMMUNICATIONS, 2018, 9
[10]   Structure-activity strategy comparison of (NH4)2CO3 and NH4OH precipitants on MnOx catalyst for low-temperature NO abatement [J].
Chen, Zhichao ;
Ren, Shan ;
Wang, Mingming ;
Chen, Lin ;
Li, Xiaodi ;
Li, Jiangling ;
Yang, Jian ;
Liu, Qingcai .
MOLECULAR CATALYSIS, 2022, 531