Latent information-guided one-step multi-view fuzzy clustering based on cross-view anchor graph

被引:17
|
作者
Zhang, Chuanbin [1 ,2 ]
Chen, Long [1 ]
Shi, Zhaoyin [1 ]
Ding, Weiping [3 ]
机构
[1] Univ Macau, Dept Comp & Informat Sci, Fac Sci & Technol, Macao Special Adm Region 999078, Peoples R China
[2] Zhaoqing Univ, Sch Comp Sci & Software, Zhaoqing 526061, Peoples R China
[3] Nantong Univ, Sch Informat Sci & Technol, Nantong 226019, Peoples R China
基金
中国国家自然科学基金;
关键词
Multi-view learning; Anchor graph; Latent feature; Fuzzy clustering; Information fusion;
D O I
10.1016/j.inffus.2023.102025
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Although graph-inspired clustering methods have achieved impressive success in the area of multi-view data analysis, current methods still face several challenges. First, classical graph construction approaches are computationally expensive in terms of both time and space for large-scale data. Second, fusing graphs from different views remains a challenge. Third, most existing methods require additional post-processing steps to generate the label assignment matrix. To address the above challenges, this paper proposes a novel multi -view clustering algorithm, called latent information-guided one-step multi-view fuzzy clustering based on cross-view anchor graph. Specifically, we introduce an efficient cross-view anchor graph learning approach to construct the similarity matrix of multi-view data and extract latent information from the graph, which reduces the computational complexity of graph learning and inspires the optimization of the consensus membership matrix. Following that, our one-step multi-view fuzzy clustering algorithm can directly generate the final clustering result in an effective and straightforward manner. Furthermore, during the optimization process, the proposed method balances consensus matrix learning and view-specified membership exploration via a self-tuned weighting mechanism. The comprehensive experimental analysis demonstrates the superiority of our approach over the state-of-the-art approaches.
引用
收藏
页数:13
相关论文
共 50 条
  • [1] Cross-view Graph Matching Guided Anchor Alignment for Incomplete Multi-view Clustering
    Li, Xingfeng
    Sun, Yinghui
    Sun, Quansen
    Ren, Zhenwen
    Sun, Yuan
    INFORMATION FUSION, 2023, 100
  • [2] Scalable Multi-View Graph Clustering With Cross-View Corresponding Anchor Alignment
    Wang, Siwei
    Liu, Xinwang
    Liao, Qing
    Wen, Yi
    Zhu, En
    He, Kunlun
    IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 2025, 37 (05) : 2932 - 2945
  • [3] Anchor Graph-Based Feature Selection for One-Step Multi-View Clustering
    Zhao, Wenhui
    Li, Qin
    Xu, Huafu
    Gao, Quanxue
    Wang, Qianqian
    Gao, Xinbo
    IEEE TRANSACTIONS ON MULTIMEDIA, 2024, 26 : 7413 - 7425
  • [4] Cross-view graph matching for incomplete multi-view clustering
    Yang, Jing-Hua
    Fu, Le-Le
    Chen, Chuan
    Dai, Hong-Ning
    Zheng, Zibin
    NEUROCOMPUTING, 2023, 515 : 79 - 88
  • [5] One-step graph-based incomplete multi-view clustering
    Zhou, Baishun
    Ji, Jintian
    Gu, Zhibin
    Zhou, Zihao
    Ding, Gangyi
    Feng, Songhe
    MULTIMEDIA SYSTEMS, 2024, 30 (01)
  • [6] One-step graph-based incomplete multi-view clustering
    Baishun Zhou
    Jintian Ji
    Zhibin Gu
    Zihao Zhou
    Gangyi Ding
    Songhe Feng
    Multimedia Systems, 2024, 30
  • [7] Bidirectional Fusion With Cross-View Graph Filter for Multi-View Clustering
    Yang, Xiaojun
    Zhu, Tuoji
    Wu, Danyang
    Wang, Penglei
    Liu, Yujia
    Nie, Feiping
    IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 2024, 36 (11) : 5675 - 5680
  • [8] Unpaired Multi-View Graph Clustering With Cross-View Structure Matching
    Wen, Yi
    Wang, Siwei
    Liao, Qing
    Liang, Weixuan
    Liang, Ke
    Wan, Xinhang
    Liu, Xinwang
    IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2023, 35 (11) : 1 - 15
  • [9] Unpaired Multi-View Graph Clustering With Cross-View Structure Matching
    Wen, Yi
    Wang, Siwei
    Liao, Qing
    Liang, Weixuan
    Liang, Ke
    Wan, Xinhang
    Liu, Xinwang
    IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2024, 35 (11) : 16049 - 16063
  • [10] CGD: Multi-View Clustering via Cross-View Graph Diffusion
    Tang, Chang
    Liu, Xinwang
    Zhu, Xinzhong
    Zhu, En
    Luo, Zhigang
    Wang, Lizhe
    Gao, Wen
    THIRTY-FOURTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, THE THIRTY-SECOND INNOVATIVE APPLICATIONS OF ARTIFICIAL INTELLIGENCE CONFERENCE AND THE TENTH AAAI SYMPOSIUM ON EDUCATIONAL ADVANCES IN ARTIFICIAL INTELLIGENCE, 2020, 34 : 5924 - 5931