Regularized parametric survival modeling to improve risk prediction models

被引:0
|
作者
Hoogland, J. [1 ,2 ,7 ]
Debray, T. P. A. [1 ,3 ]
Crowther, M. J. [4 ]
Riley, R. D. [5 ]
Inthout, J. [6 ]
Reitsma, J. B. [1 ,3 ]
Zwinderman, A. H. [2 ]
机构
[1] Univ Utrecht, Univ Med Ctr Utrecht, Julius Ctr Hlth Sci & Primary Care, Utrecht, Netherlands
[2] Amsterdam Univ Med Ctr, Dept Epidemiol & Data Sci, Amsterdam, Netherlands
[3] Univ Utrecht, Univ Med Ctr Utrecht, Cochrane Netherlands, Utrecht, Netherlands
[4] Karolinska Inst, Dept Med Epidemiol & Biostat, Stockholm, Sweden
[5] Keele Univ, Sch Med, Keele, England
[6] Radboud Univ Nijmegen, Med Ctr, Radboud Inst Hlth Sci RIHS, Nijmegen, Netherlands
[7] Amsterdam Univ Med Ctr, Dept Epidemiol & Data Sci, Meibergdreef 9, NL-1105 AZ Amsterdam, Netherlands
关键词
convex optimization; penalized maximum likelihood; prediction; regularization; survival analysis; PROPORTIONAL-HAZARDS; REGRESSION; SHRINKAGE; PATHS;
D O I
10.1002/bimj.202200319
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
We propose to combine the benefits of flexible parametric survival modeling and regularization to improve risk prediction modeling in the context of time-to-event data. Thereto, we introduce ridge, lasso, elastic net, and group lasso penalties for both log hazard and log cumulative hazard models. The log (cumulative) hazard in these models is represented by a flexible function of time that may depend on the covariates (i.e., covariate effects may be time-varying). We show that the optimization problem for the proposed models can be formulated as a convex optimization problem and provide a user-friendly R implementation for model fitting and penalty parameter selection based on cross-validation. Simulation study results show the advantage of regularization in terms of increased out-of-sample prediction accuracy and improved calibration and discrimination of predicted survival probabilities, especially when sample size was relatively small with respect to model complexity. An applied example illustrates the proposed methods. In summary, our work provides both a foundation for and an easily accessible implementation of regularized parametric survival modeling and suggests that it improves out-of-sample prediction performance.
引用
收藏
页数:16
相关论文
共 50 条
  • [41] External Validation of Risk Prediction Models to Improve Selection of Patients for Carotid Endarterectomy
    Poorthuis, Michiel H. F.
    Herings, Reinier A. R.
    Dansey, Kirsten
    Damen, Johanna A. A.
    Greving, Jacoba P.
    Schermerhorn, Marc L.
    de Borst, Gert J.
    STROKE, 2022, 53 (01) : 87 - 99
  • [42] Combining global climate and regional landscape models to improve prediction of invasion risk
    Kelly, Ruth
    Leach, Katie
    Cameron, Alison
    Maggs, Christine A.
    Reid, Neil
    DIVERSITY AND DISTRIBUTIONS, 2014, 20 (08) : 884 - 894
  • [43] Kidney Cancer Biomarker Selection Using Regularized Survival Models
    Peixoto, Carolina
    Martins, Marta
    Costa, Luis
    Vinga, Susana
    CELLS, 2022, 11 (15)
  • [44] flexsurv: A Platform for Parametric Survival Modeling in R
    Jackson, Christopher H.
    JOURNAL OF STATISTICAL SOFTWARE, 2016, 70 (08): : 1 - 33
  • [45] SEQUENTIAL-METHODS FOR PARAMETRIC SURVIVAL MODELS
    TSIATIS, AA
    BOUCHER, H
    KIM, KM
    BIOMETRIKA, 1995, 82 (01) : 165 - 173
  • [46] ON INFERENCE IN PARAMETRIC SURVIVAL-DATA MODELS
    HJORT, NL
    INTERNATIONAL STATISTICAL REVIEW, 1992, 60 (03) : 355 - 387
  • [47] A handbook of parametric survival models for actuarial use
    Richards, S. J.
    SCANDINAVIAN ACTUARIAL JOURNAL, 2012, (04) : 233 - 257
  • [48] Generalized parametric cure models for relative survival
    Jakobsen, Lasse Hjort
    Bogsted, Martin
    Clements, Mark
    BIOMETRICAL JOURNAL, 2020, 62 (04) : 989 - 1011
  • [49] Privacy Protection for Flexible Parametric Survival Models
    Nguyen, Thong T.
    Hui, Siu Cheung
    CIKM'18: PROCEEDINGS OF THE 27TH ACM INTERNATIONAL CONFERENCE ON INFORMATION AND KNOWLEDGE MANAGEMENT, 2018, : 1273 - 1282
  • [50] Parametric frailty and shared frailty survival models
    Gutierrez, Roberto G.
    STATA JOURNAL, 2002, 2 (01): : 22 - 44