Regularized parametric survival modeling to improve risk prediction models

被引:0
|
作者
Hoogland, J. [1 ,2 ,7 ]
Debray, T. P. A. [1 ,3 ]
Crowther, M. J. [4 ]
Riley, R. D. [5 ]
Inthout, J. [6 ]
Reitsma, J. B. [1 ,3 ]
Zwinderman, A. H. [2 ]
机构
[1] Univ Utrecht, Univ Med Ctr Utrecht, Julius Ctr Hlth Sci & Primary Care, Utrecht, Netherlands
[2] Amsterdam Univ Med Ctr, Dept Epidemiol & Data Sci, Amsterdam, Netherlands
[3] Univ Utrecht, Univ Med Ctr Utrecht, Cochrane Netherlands, Utrecht, Netherlands
[4] Karolinska Inst, Dept Med Epidemiol & Biostat, Stockholm, Sweden
[5] Keele Univ, Sch Med, Keele, England
[6] Radboud Univ Nijmegen, Med Ctr, Radboud Inst Hlth Sci RIHS, Nijmegen, Netherlands
[7] Amsterdam Univ Med Ctr, Dept Epidemiol & Data Sci, Meibergdreef 9, NL-1105 AZ Amsterdam, Netherlands
关键词
convex optimization; penalized maximum likelihood; prediction; regularization; survival analysis; PROPORTIONAL-HAZARDS; REGRESSION; SHRINKAGE; PATHS;
D O I
10.1002/bimj.202200319
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
We propose to combine the benefits of flexible parametric survival modeling and regularization to improve risk prediction modeling in the context of time-to-event data. Thereto, we introduce ridge, lasso, elastic net, and group lasso penalties for both log hazard and log cumulative hazard models. The log (cumulative) hazard in these models is represented by a flexible function of time that may depend on the covariates (i.e., covariate effects may be time-varying). We show that the optimization problem for the proposed models can be formulated as a convex optimization problem and provide a user-friendly R implementation for model fitting and penalty parameter selection based on cross-validation. Simulation study results show the advantage of regularization in terms of increased out-of-sample prediction accuracy and improved calibration and discrimination of predicted survival probabilities, especially when sample size was relatively small with respect to model complexity. An applied example illustrates the proposed methods. In summary, our work provides both a foundation for and an easily accessible implementation of regularized parametric survival modeling and suggests that it improves out-of-sample prediction performance.
引用
收藏
页数:16
相关论文
共 50 条
  • [31] Estimation and inference of predictive discrimination for survival outcome risk prediction models
    Li, Ruosha
    Ning, Jing
    Feng, Ziding
    LIFETIME DATA ANALYSIS, 2022, 28 (02) : 219 - 240
  • [32] Evaluating Dynamic Discrimination Performance of Risk Prediction Models for Survival Outcomes
    Jing Zhang
    Jing Ning
    Ruosha Li
    Statistics in Biosciences, 2023, 15 : 353 - 371
  • [33] Estimation and inference of predictive discrimination for survival outcome risk prediction models
    Ruosha Li
    Jing Ning
    Ziding Feng
    Lifetime Data Analysis, 2022, 28 : 219 - 240
  • [34] Evaluating Dynamic Discrimination Performance of Risk Prediction Models for Survival Outcomes
    Zhang, Jing
    Ning, Jing
    Li, Ruosha
    STATISTICS IN BIOSCIENCES, 2023, 15 (02) : 353 - 371
  • [35] SurvMaximin: Robust federated approach to transporting survival risk prediction models
    Wang, Xuan
    Zhang, Harrison G.
    Xiong, Xin
    Hong, Chuan
    Weber, Griffin M.
    Brat, Gabriel A.
    Bonzel, Clara-Lea
    Luo, Yuan
    Duan, Rui
    Palmer, Nathan P.
    Hutch, Meghan R.
    Gutierrez-Sacristan, Alba
    Bellazzi, Riccardo
    Chiovato, Luca
    Cho, Kelly
    Dagliati, Arianna
    Estiri, Hossein
    Garcia-Barrio, Noelia
    Griffier, Romain
    Hanauer, David A.
    Ho, Yuk-Lam
    Holmes, John H.
    Keller, Mark S.
    MEng, Jeffrey G. Klann
    L'Yi, Sehi
    Lozano-Zahonero, Sara
    Maidlow, Sarah E.
    Makoudjou, Adeline
    Malovini, Alberto
    Moal, Bertrand
    Moore, Jason H.
    Morris, Michele
    Mowery, Danielle L.
    Murphy, Shawn N.
    Neuraz, Antoine
    Ngiam, Kee Yuan
    Omenn, Gilbert S.
    Patel, Lav P.
    Pedrera-Jimenez, Miguel
    Prunotto, Andrea
    Samayamuthu, Malarkodi Jebathilagam
    Vidorreta, Fernando J. Sanz
    Schriver, Emily R.
    Schubert, Petra
    Serrano-Balazote, Pablo
    South, Andrew M.
    Tan, Amelia L. M.
    Tan, Byorn W. L.
    Tibollo, Valentina
    Tippmann, Patric
    JOURNAL OF BIOMEDICAL INFORMATICS, 2022, 134
  • [36] Complex Survival System Modeling for Risk Assessment of Infant Mortality Using a Parametric Approach
    Chen H.
    Sadiq M.
    Song Z.
    Computational and Mathematical Methods in Medicine, 2022, 2022
  • [37] Semi-parametric risk prediction models for recurrent cardiovascular events in the LIPID study
    Cui, Jisheng
    Forbes, Andrew
    Kirby, Adrienne
    Marschner, Ian
    Simes, John
    Hunt, David
    West, Malcolm
    Tonkin, Andrew
    BMC MEDICAL RESEARCH METHODOLOGY, 2010, 10
  • [38] Semi-parametric risk prediction models for recurrent cardiovascular events in the LIPID study
    Jisheng Cui
    Andrew Forbes
    Adrienne Kirby
    Ian Marschner
    John Simes
    David Hunt
    Malcolm West
    Andrew Tonkin
    BMC Medical Research Methodology, 10
  • [39] Using modeling to improve models
    Garbey, C.
    Garbey, M.
    Muller, S.
    ECOLOGICAL MODELLING, 2006, 197 (3-4) : 303 - 319
  • [40] Waist circumference does not improve established cardiovascular disease risk prediction modeling
    Nelms, Matthew W.
    Day, Andrew G.
    Sui, Xuemei
    Blair, Steven N.
    Ross, Robert
    PLOS ONE, 2020, 15 (10):