Regularized parametric survival modeling to improve risk prediction models

被引:0
|
作者
Hoogland, J. [1 ,2 ,7 ]
Debray, T. P. A. [1 ,3 ]
Crowther, M. J. [4 ]
Riley, R. D. [5 ]
Inthout, J. [6 ]
Reitsma, J. B. [1 ,3 ]
Zwinderman, A. H. [2 ]
机构
[1] Univ Utrecht, Univ Med Ctr Utrecht, Julius Ctr Hlth Sci & Primary Care, Utrecht, Netherlands
[2] Amsterdam Univ Med Ctr, Dept Epidemiol & Data Sci, Amsterdam, Netherlands
[3] Univ Utrecht, Univ Med Ctr Utrecht, Cochrane Netherlands, Utrecht, Netherlands
[4] Karolinska Inst, Dept Med Epidemiol & Biostat, Stockholm, Sweden
[5] Keele Univ, Sch Med, Keele, England
[6] Radboud Univ Nijmegen, Med Ctr, Radboud Inst Hlth Sci RIHS, Nijmegen, Netherlands
[7] Amsterdam Univ Med Ctr, Dept Epidemiol & Data Sci, Meibergdreef 9, NL-1105 AZ Amsterdam, Netherlands
关键词
convex optimization; penalized maximum likelihood; prediction; regularization; survival analysis; PROPORTIONAL-HAZARDS; REGRESSION; SHRINKAGE; PATHS;
D O I
10.1002/bimj.202200319
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
We propose to combine the benefits of flexible parametric survival modeling and regularization to improve risk prediction modeling in the context of time-to-event data. Thereto, we introduce ridge, lasso, elastic net, and group lasso penalties for both log hazard and log cumulative hazard models. The log (cumulative) hazard in these models is represented by a flexible function of time that may depend on the covariates (i.e., covariate effects may be time-varying). We show that the optimization problem for the proposed models can be formulated as a convex optimization problem and provide a user-friendly R implementation for model fitting and penalty parameter selection based on cross-validation. Simulation study results show the advantage of regularization in terms of increased out-of-sample prediction accuracy and improved calibration and discrimination of predicted survival probabilities, especially when sample size was relatively small with respect to model complexity. An applied example illustrates the proposed methods. In summary, our work provides both a foundation for and an easily accessible implementation of regularized parametric survival modeling and suggests that it improves out-of-sample prediction performance.
引用
收藏
页数:16
相关论文
共 50 条
  • [21] Semi-supervised learning to improve generalizability of risk prediction models
    Chi, Shengqiang
    Li, Xinhang
    Tian, Yu
    Li, Jun
    Kong, Xiangxing
    Ding, Kefeng
    Weng, Chunhua
    Li, Jingsong
    JOURNAL OF BIOMEDICAL INFORMATICS, 2019, 92
  • [23] When (not) to apply clinical risk prediction models to improve patient care
    Lee, A.
    Moonesinghe, S. R.
    ANAESTHESIA, 2023, 78 (05) : 547 - 550
  • [24] Software Reliability Prediction Modeling: A Comparison of Parametric and Non-Parametric Modeling
    Choudhary, Ankur
    Baghel, Anurag Singh
    Sangwan, Om Prakash
    2016 6TH INTERNATIONAL CONFERENCE - CLOUD SYSTEM AND BIG DATA ENGINEERING (CONFLUENCE), 2016, : 649 - 653
  • [25] Joint Modeling, Covariate Adjustment, and Interaction Contrasting Notions in Risk Prediction Models and Risk Prediction Performance
    Kerr, Kathleen F.
    Pepe, Margaret S.
    EPIDEMIOLOGY, 2011, 22 (06) : 805 - 812
  • [26] Regularized linear prediction all-pole models
    Murthi, MN
    Kleijn, WB
    2000 IEEE WORKSHOP ON SPEECH CODING, PROCEEDINGS: MEETING THE CHALLENGES OF THE NEW MILLENNIUM, 2000, : 96 - 98
  • [27] Flexible, non-parametric modeling using regularized neural networks
    Allerbo, Oskar
    Jornsten, Rebecka
    COMPUTATIONAL STATISTICS, 2022, 37 (04) : 2029 - 2047
  • [28] Flexible, non-parametric modeling using regularized neural networks
    Oskar Allerbo
    Rebecka Jörnsten
    Computational Statistics, 2022, 37 : 2029 - 2047
  • [29] Survival Prediction with Extreme Learning Machine, Supervised Principal Components and Regularized Cox Models in High-Dimensional Survival Data by Simulation
    Turkis, Fulden Cantas
    Omurlu, Imran Kurt
    Ture, Mevlut
    GAZI UNIVERSITY JOURNAL OF SCIENCE, 2024, 37 (02): : 1004 - 1020
  • [30] Risk prediction models for survival after heart transplantation: A systematic review
    Aleksova, Natasha
    Alba, Ana C.
    Molinero, Victoria M.
    Connolly, Katherine
    Orchanian-Cheff, Ani
    Badiwala, Mitesh
    Ross, Heather J.
    Posada, Juan G. Duero
    AMERICAN JOURNAL OF TRANSPLANTATION, 2020, 20 (04) : 1137 - 1151