Deductive automated pollen classification in environmental samples via exploratory deep learning and imaging flow cytometry

被引:5
作者
Barnes, Claire M. [1 ]
Power, Ann L. [2 ]
Barber, Daniel G. [3 ]
Tennant, Richard K. [3 ]
Jones, Richard T.
Lee, G. Rob [2 ]
Hatton, Jackie [3 ]
Elliott, Angela [3 ]
Zaragoza-Castells, Joana [3 ]
Haley, Stephen M. [3 ]
Summers, Huw D. [1 ]
Doan, Minh [4 ]
Carpenter, Anne E. [5 ]
Rees, Paul [1 ,5 ]
Love, John [2 ]
机构
[1] Swansea Univ, Coll Engn, Bay Campus, Swansea SA1 8EN, Wales
[2] Univ Exeter, Fac Hlth & Life Sci, Biosci, Exeter EX4 4QD, England
[3] Univ Exeter, Fac Environm Sci & Econ, Geog, Exeter EX4 4RJ, England
[4] GlaxoSmithKline, Bioimaging Analyt, Collegeville, Upper Providence, PA 19426 USA
[5] Broad Inst Harvard & MIT, Imaging Platform, Cambridge, MA 02142 USA
基金
美国国家卫生研究院; 英国工程与自然科学研究理事会; 英国生物技术与生命科学研究理事会;
关键词
artificial intelligence; deep learning; imaging flow cytometry; machine learning; palaeoecology; palynology; pollen; CLIMATE-CHANGE; IDENTIFICATION; GRAINS; SIZE;
D O I
10.1111/nph.19186
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
Pollen and tracheophyte spores are ubiquitous environmental indicators at local and global scales. Palynology is typically performed manually by microscopic analysis; a specialised and time-consuming task limited in taxonomical precision and sampling frequency, therefore restricting data quality used to inform climate change and pollen forecasting models. We build on the growing work using AI (artificial intelligence) for automated pollen classification to design a flexible network that can deal with the uncertainty of broad-scale environmental applications. We combined imaging flow cytometry with Guided Deep Learning to identify and accurately categorise pollen in environmental samples; here, pollen grains captured within c. 5500 Cal yr BP old lake sediments. Our network discriminates not only pollen included in training libraries to the species level but, depending on the sample, can classify previously unseen pollen to the likely phylogenetic order, family and even genus. Our approach offers valuable insights into the development of a widely transferable, rapid and accurate exploratory tool for pollen classification in 'real-world' environmental samples with improved accuracy over pure deep learning techniques. This work has the potential to revolutionise many aspects of palynology, allowing a more detailed spatial and temporal understanding of pollen in the environment with improved taxonomical resolution.
引用
收藏
页码:1305 / 1326
页数:22
相关论文
共 49 条
[41]   Automated classification of angle-closure mechanisms based on anterior segment optical coherence tomography images via deep learning [J].
Zhang, Ye ;
Zhang, Xiaoyue ;
Zhang, Qing ;
Lv, Bin ;
Hu, Man ;
Lv, Chuanfeng ;
Ni, Yuan ;
Xie, Guotong ;
Li, Shuning ;
Zebardast, Nazlee ;
Shweikh, Yusrah ;
Wang, Ningli .
HELIYON, 2024, 10 (15)
[42]   Deep learning model for the automated detection and classification of central canal and neural foraminal stenosis upon cervical spine magnetic resonance imaging [J].
Zhang, Enlong ;
Yao, Meiyi ;
Li, Yuan ;
Wang, Qizheng ;
Song, Xinhang ;
Chen, Yongye ;
Liu, Ke ;
Zhao, Weili ;
Xing, Xiaoying ;
Zhou, Yan ;
Meng, Fanyu ;
Ouyang, Hanqiang ;
Chen, Gongwei ;
Jiang, Liang ;
Lang, Ning ;
Jiang, Shuqiang ;
Yuan, Huishu .
BMC MEDICAL IMAGING, 2024, 24 (01)
[43]   A Cascaded Deep Learning-Based Artificial Intelligence Algorithm for Automated Lesion Detection and Classification on Biparametric Prostate Magnetic Resonance Imaging [J].
Mehralivand, Sherif ;
Yang, Dong ;
Harmon, Stephanie A. ;
Xu, Daguang ;
Xu, Ziyue ;
Roth, Holger ;
Masoudi, Samira ;
Sanford, Thomas H. ;
Kesani, Deepak ;
Lay, Nathan S. ;
Merino, Maria J. ;
Wood, Bradford J. ;
Pinto, Peter A. ;
Choyke, Peter L. ;
Turkbey, Baris .
ACADEMIC RADIOLOGY, 2022, 29 (08) :1159-1168
[44]   High-content 2D light scattering flow cytometry for label-free classification of cervical carcinoma cells with deep learning [J].
Liu, Chao ;
Liu, Qiao ;
Su, Xuantao .
OPTICS IN HEALTH CARE AND BIOMEDICAL OPTICS X, 2020, 11553
[45]   Sub-Visible Particle Classification and Label Consistency Analysis for Flow-Imaging Microscopy Via Machine Learning Methods [J].
Rio, Angela Lopez-del ;
Pacios-Michelena, Anabel ;
Picart-Armada, Sergio ;
Garidel, Patrick ;
Nikels, Felix ;
Kube, Sebastian .
JOURNAL OF PHARMACEUTICAL SCIENCES, 2024, 113 (04) :880-890
[46]   CAD-EYE: An Automated System for Multi-Eye Disease Classification Using Feature Fusion with Deep Learning Models and Fluorescence Imaging for Enhanced Interpretability [J].
Khalid, Maimoona ;
Sajid, Muhammad Zaheer ;
Youssef, Ayman ;
Khan, Nauman Ali ;
Hamid, Muhammad Fareed ;
Abbas, Fakhar .
DIAGNOSTICS, 2024, 14 (23)
[47]   Deep learning applied to two-dimensional color Doppler flow imaging ultrasound images significantly improves diagnostic performance in the classification of breast masses: a multicenter study [J].
Yu TengFei ;
He Wen ;
Gan CongGui ;
Zhao MingChang ;
Zhu Qiang ;
Zhang Wei ;
Wang Hui ;
Luo YuKun ;
Nie Fang ;
Yuan LiJun ;
Wang Yong ;
Guo YanLi ;
Yuan JianJun ;
Ruan LiTao ;
Wang YiCheng ;
Zhang RuiFang ;
Zhang HongXia ;
Ning Bin ;
Song HaiMan ;
Zheng Shuai ;
Li Yi ;
Guang Yang .
中华医学杂志英文版, 2021, 134 (04) :415-424
[48]   Deep learning applied to two-dimensional color Doppler flow imaging ultrasound images significantly improves diagnostic performance in the classification of breast masses: a multicenter study [J].
Yu, Teng-Fei ;
He, Wen ;
Gan, Cong-Gui ;
Zhao, Ming-Chang ;
Zhu, Qiang ;
Zhang, Wei ;
Wang, Hui ;
Luo, Yu-Kun ;
Nie, Fang ;
Yuan, Li-Jun ;
Wang, Yong ;
Guo, Yan-Li ;
Yuan, Jian-Jun ;
Ruan, Li-Tao ;
Wang, Yi-Cheng ;
Zhang, Rui-Fang ;
Zhang, Hong-Xia ;
Ning, Bin ;
Song, Hai-Man ;
Zheng, Shuai ;
Li, Yi ;
Guang, Yang .
CHINESE MEDICAL JOURNAL, 2021, 134 (04) :415-424
[49]   Deep learning-driven automated carcass segmentation and composition quantification in live pigs via large-scale CT imaging and its application in genetic analysis of pig breeding [J].
Xu, Haoqi ;
Zhang, Zhenyang ;
Zhao, Wei ;
Zhuang, Yizheng ;
Hou, Xiaoliang ;
He, Yongqi ;
Wang, Jianlan ;
Bai, Jiongtang ;
Fu, Yan ;
Wang, Zhen ;
Pan, Yuchun ;
Wang, Qishan ;
Zhang, Zhe .
SMART AGRICULTURAL TECHNOLOGY, 2025, 11