Deductive automated pollen classification in environmental samples via exploratory deep learning and imaging flow cytometry

被引:5
作者
Barnes, Claire M. [1 ]
Power, Ann L. [2 ]
Barber, Daniel G. [3 ]
Tennant, Richard K. [3 ]
Jones, Richard T.
Lee, G. Rob [2 ]
Hatton, Jackie [3 ]
Elliott, Angela [3 ]
Zaragoza-Castells, Joana [3 ]
Haley, Stephen M. [3 ]
Summers, Huw D. [1 ]
Doan, Minh [4 ]
Carpenter, Anne E. [5 ]
Rees, Paul [1 ,5 ]
Love, John [2 ]
机构
[1] Swansea Univ, Coll Engn, Bay Campus, Swansea SA1 8EN, Wales
[2] Univ Exeter, Fac Hlth & Life Sci, Biosci, Exeter EX4 4QD, England
[3] Univ Exeter, Fac Environm Sci & Econ, Geog, Exeter EX4 4RJ, England
[4] GlaxoSmithKline, Bioimaging Analyt, Collegeville, Upper Providence, PA 19426 USA
[5] Broad Inst Harvard & MIT, Imaging Platform, Cambridge, MA 02142 USA
基金
英国生物技术与生命科学研究理事会; 美国国家卫生研究院; 英国工程与自然科学研究理事会;
关键词
artificial intelligence; deep learning; imaging flow cytometry; machine learning; palaeoecology; palynology; pollen; CLIMATE-CHANGE; IDENTIFICATION; GRAINS; SIZE;
D O I
10.1111/nph.19186
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
Pollen and tracheophyte spores are ubiquitous environmental indicators at local and global scales. Palynology is typically performed manually by microscopic analysis; a specialised and time-consuming task limited in taxonomical precision and sampling frequency, therefore restricting data quality used to inform climate change and pollen forecasting models. We build on the growing work using AI (artificial intelligence) for automated pollen classification to design a flexible network that can deal with the uncertainty of broad-scale environmental applications. We combined imaging flow cytometry with Guided Deep Learning to identify and accurately categorise pollen in environmental samples; here, pollen grains captured within c. 5500 Cal yr BP old lake sediments. Our network discriminates not only pollen included in training libraries to the species level but, depending on the sample, can classify previously unseen pollen to the likely phylogenetic order, family and even genus. Our approach offers valuable insights into the development of a widely transferable, rapid and accurate exploratory tool for pollen classification in 'real-world' environmental samples with improved accuracy over pure deep learning techniques. This work has the potential to revolutionise many aspects of palynology, allowing a more detailed spatial and temporal understanding of pollen in the environment with improved taxonomical resolution.
引用
收藏
页码:1305 / 1326
页数:22
相关论文
共 50 条
[21]   Automated Detection and Grading of Extraprostatic Extension of Prostate Cancer at MRI via Cascaded Deep Learning and Random Forest Classification [J].
Simon, Benjamin D. ;
Merriman, Katie M. ;
Harmon, Stephanie A. ;
Tetreault, Jesse ;
Yilmaz, Enis C. ;
Blake, Zoe ;
Merino, Maria J. ;
An, Julie Y. ;
Marko, Jamie ;
Law, Yan Mee ;
Gurram, Sandeep ;
Wood, Bradford J. ;
Choyke, Peter L. ;
Pinto, Peter A. ;
Turkbey, Baris .
ACADEMIC RADIOLOGY, 2024, 31 (10) :4096-4106
[22]   Inter-laboratory automation of the in vitro micronucleus assay using imaging flow cytometry and deep learning [J].
John W. Wills ;
Jatin R. Verma ;
Benjamin J. Rees ;
Danielle S. G. Harte ;
Qiellor Haxhiraj ;
Claire M. Barnes ;
Rachel Barnes ;
Matthew A. Rodrigues ;
Minh Doan ;
Andrew Filby ;
Rachel E. Hewitt ;
Catherine A. Thornton ;
James G. Cronin ;
Julia D. Kenny ;
Ruby Buckley ;
Anthony M. Lynch ;
Anne E. Carpenter ;
Huw D. Summers ;
George E. Johnson ;
Paul Rees .
Archives of Toxicology, 2021, 95 :3101-3115
[23]   Deep Learning-Based Classification and Segmentation of Sperm Head and Flagellum for Image-Based Flow Cytometry [J].
Hernandez-Herrera, Paul ;
Abonza, Victor ;
Sanchez-Contreras, Jair ;
Darszon, Alberto ;
Guerrero, Adan .
COMPUTACION Y SISTEMAS, 2023, 27 (04) :1133-1145
[24]   An exploratory and automated study of sarcasm detection and classification in app stores using fine-tuned deep learning classifiers [J].
Fatima, Eman ;
Kanwal, Hira ;
Khan, Javed Ali ;
Khan, Nek Dil .
AUTOMATED SOFTWARE ENGINEERING, 2024, 31 (02)
[25]   Toward development of automated grading system for carious lesions classification using deep learning and OCT imaging [J].
Salehi, Hassan S. ;
Barchini, Majd ;
Chen, Qingguang ;
Mahdian, Mina .
MEDICAL IMAGING 2021: BIOMEDICAL APPLICATIONS IN MOLECULAR, STRUCTURAL, AND FUNCTIONAL IMAGING, 2021, 11600
[26]   A Fully Automated Analytic System for Measuring Endolymphatic Hydrops Ratios in Patients With Meniere Disease via Magnetic Resonance Imaging: Deep Learning Model Development Study [J].
Park, Chae Jung ;
Cho, Young Sang ;
Chung, Myung Jin ;
Kim, Yi-Kyung ;
Kim, Hyung-Jin ;
Kim, Kyunga ;
Ko, Jae-Wook ;
Chung, Won-Ho ;
Cho, Baek Hwan .
JOURNAL OF MEDICAL INTERNET RESEARCH, 2021, 23 (09)
[27]   A Deep Learning-Based Hyperspectral Object Classification Approach via Imbalanced Training Samples Handling [J].
Islam, Md Touhid ;
Islam, Md Rashedul ;
Uddin, Md Palash ;
Ulhaq, Anwaar .
REMOTE SENSING, 2023, 15 (14)
[28]   Deep learning-enhanced hyperspectral imaging for rapid screening of Co-metabolic microplastic-degrading bacteria in environmental samples [J].
Zheng, Yuan ;
Zhou, Hao ;
Peng, Yingqi ;
Wang, Xue ;
Yang, Yuxiang ;
Deng, Yifan ;
Liu, Yang ;
Pan, Haixia ;
Zhao, Xu ;
Yang, Xiaojing ;
Guo, Jianli ;
Shan, Jiajia .
JOURNAL OF HAZARDOUS MATERIALS, 2025, 493
[29]   Applying Deep Learning with Convolutional Neural Networks to Laryngoscopic Imaging for Automated Segmentation and Classification of Vocal Cord Leukoplakia [J].
Xiong, Ming ;
Luo, Jia-wei ;
Ren, Jia ;
Hu, Juan-Juan ;
Lan, Lan ;
Zhang, Ying ;
Lv, Dan ;
Zhou, Xiao-bo ;
Yang, Hui .
ENT-EAR NOSE & THROAT JOURNAL, 2024,
[30]   Automated osteoporosis classification and T-score prediction using hip radiographs via deep learning algorithm [J].
Chen, Yu-Pin ;
Chan, Wing P. ;
Zhang, Han-Wei ;
Tsai, Zhi-Ren ;
Peng, Hsiao-Ching ;
Huang, Shu-Wei ;
Jang, Yeu-Chai ;
Kuo, Yi-Jie .
THERAPEUTIC ADVANCES IN MUSCULOSKELETAL DISEASE, 2024, 16