Hydrogenation of CO2 to Formate with a Highly Active Solid Ruthenium Phosphine

被引:9
作者
Zhu, Boyu [1 ]
Hu, Jinling [1 ]
Wu, Youting [1 ]
Geng, Jiao [1 ]
Hu, Xingbang [1 ]
机构
[1] Nanjing Univ, Sch Chem & Chem Engn, Nanjing 210093, Peoples R China
基金
中国国家自然科学基金;
关键词
CO2; hydrogenation; formates; heterogeneous catalysis; ruthenium; CARBON-DIOXIDE; FORMIC-ACID; CATALYTIC-HYDROGENATION; ORGANIC POLYMERS; RAW-MATERIAL; EFFICIENT; COMPLEXES; IRIDIUM; LIGAND; HYDROFORMYLATION;
D O I
10.1002/cctc.202300605
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
There is widespread interest in the hydrogenation of CO2 to produce high-energy substances such as formic acid. Herein, ruthenium trichloride was immobilized on porous phosphine polymers (Ru/KAPs-Ph-PPh3) and gave excellent catalytic activity in the hydrogenation of CO2 to produce formate. With the assistance of 1,8-diazabicyclo[5.4.0]undec-7-ene (DBU), a high turnover number (TON) of up to 1470000 was obtained in 12 hours at 120 & DEG;C and a total pressure of 6 MPa (P(H-2)/P(CO2)=1 : 1), with average TOFs of 122500 h(-1). Moreover, the catalyst can be easily recovered by filtration with acceptable catalytic effectiveness.
引用
收藏
页数:7
相关论文
共 60 条
[1]   Organometallic polymers of the transition metals [J].
Abd-El-Aziz, AS .
MACROMOLECULAR RAPID COMMUNICATIONS, 2002, 23 (17) :995-1031
[2]   Atomically dispersed Ru(III) on N-doped mesoporous carbon hollow spheres as catalysts for CO2 hydrogenation to formate [J].
Ahn, Sunghee ;
Park, Kwangho ;
Lee, Kyung Rok ;
Haider, Arsalan ;
Nguyen, Canh Van ;
Jin, Haneul ;
Yoo, Sung Jong ;
Yoon, Sungho ;
Jung, Kwang-Deog .
CHEMICAL ENGINEERING JOURNAL, 2022, 442
[3]   Challenges in the Greener Production of Formates/Formic Acid, Methanol, and DME by Heterogeneously Catalyzed CO2 Hydrogenation Processes [J].
Alvarez, Andrea ;
Bansode, Atul ;
Urakawa, Atsushi ;
Bavykina, Anastasiya V. ;
Wezendonk, Tim A. ;
Makkee, Michiel ;
Gascon, Jorge ;
Kapteijn, Freek .
CHEMICAL REVIEWS, 2017, 117 (14) :9804-9838
[4]   Thermodynamic analysis of carbon dioxide hydrogenation to formic acid and methanol [J].
Bello, T. O. ;
Bresciani, A. E. ;
Nascimento, C. A. O. ;
Alves, R. M. B. .
CHEMICAL ENGINEERING SCIENCE, 2021, 239
[5]   Heterogeneous Formic Acid Production by Hydrogenation of CO2 Catalyzed by Ir-bpy Embedded in Polyphenylene Porous Organic Polymers [J].
Bennedsen, Niklas R. ;
Christensen, David B. ;
Mortensen, Rasmus L. ;
Wang, Bolun ;
Wang, Ryan ;
Kramer, Soren ;
Kegnaes, Soren .
CHEMCATCHEM, 2021, 13 (07) :1781-1786
[6]   An all-aqueous and phosphine-free integrated amine-assisted CO2 capture and catalytic conversion to formic acid [J].
Bhardwaj, Ritu ;
Kumar, Abhishek ;
Choudhury, Joyanta .
CHEMICAL COMMUNICATIONS, 2022, 58 (82) :11531-11534
[7]   Towards Sustainable Production of Formic Acid [J].
Bulushev, Dmitri A. ;
Ross, Julian R. H. .
CHEMSUSCHEM, 2018, 11 (05) :821-836
[8]   COMPLEXES OF OSMIUM RUTHENIUM RHENIUM AND IRIDIUM HALIDES WITH SOME TERTIARY MONOPHOSPHINES AND MONOARSINES [J].
CHATT, J ;
LEIGH, GJ ;
MINGOS, DMP ;
PASKE, RJ .
JOURNAL OF THE CHEMICAL SOCIETY A -INORGANIC PHYSICAL THEORETICAL, 1968, (11) :2636-&
[9]   Hydrogen storage: beyond conventional methods [J].
Dalebrook, Andrew F. ;
Gan, Weijia ;
Grasemann, Martin ;
Moret, Severine ;
Laurenczy, Gabor .
CHEMICAL COMMUNICATIONS, 2013, 49 (78) :8735-8751
[10]   NaHCO3-enhanced hydrogen production from water with Fe and in situ highly efficient and autocatalytic NaHCO3 reduction into formic acid [J].
Duo, Jia ;
Jin, Fangming ;
Wang, Yuanqing ;
Zhong, Heng ;
Lyu, Lingyun ;
Yao, Guodong ;
Huo, Zhibao .
CHEMICAL COMMUNICATIONS, 2016, 52 (16) :3316-3319