Fluorinated Nonflammable In Situ Gel Polymer Electrolyte for High-Voltage Lithium Metal Batteries

被引:20
作者
Wang, Fuhe [1 ,2 ]
Zhong, Jun [3 ]
Guo, Yaqing [1 ]
Han, Qigao [2 ]
Liu, Honghao [2 ]
Du, Jinqiao [3 ]
Tian, Jie [3 ]
Tang, Shun [2 ]
Cao, Yuancheng [2 ]
机构
[1] Huazhong Univ Sci & Technol, Sch Mat Sci & Engn, Wuhan 430074, Peoples R China
[2] Huazhong Univ Sci & Technol, Sch Elect & Elect Engn, State Key Lab Adv Electromagnet Engn & Technol, Wuhan 430074, Peoples R China
[3] Shenzhen Power Supply Co Ltd, Shenzhen 518001, Peoples R China
关键词
in situ polymerization; gel polymer electrolytes; lithium metal batteries; high voltage; fluorinated; ION; SAFE; CHALLENGES; ANODE;
D O I
10.1021/acsami.3c05840
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Rechargeablelithium metal batteries (LMBs) offer excellent opportunitiesfor applications requiring high-energy-density battery systems. Sofar, it has received a lot of interest in pairing higher-energy-densityhigh-voltage nickel-rich cathodes. Here, fluorinated solvents wereused instead of the usual carbonate solvents to prepare gel polymerelectrolytes (FGPE) by in situ polymerization of polymers introducingthe fluorine-containing groups. Theoretically and experimentally,FGPE has proven to be ultra-compatible with the lithium metal anodeand LiNi0.8Co0.1Mn0.1O2 cathode. A stable plating/stripping process of over 2000 h can beachieved for symmetrical lithium cells using FGPE. The Li||FGPE||NCM811cell has a longer cycle life at a high voltage (4.5 V). In addition,the zero self-extinguishing time indicates that the FGPE has sufficientsafety. In summary, the design of this electrolyte provides ideasto improve the safety and energy density of LMBs.
引用
收藏
页码:39265 / 39275
页数:11
相关论文
共 54 条
[1]   Accurate Determination of Coulombic Efficiency for Lithium Metal Anodes and Lithium Metal Batteries [J].
Adams, Brian D. ;
Zheng, Jianming ;
Ren, Xiaodi ;
Xu, Wu ;
Zhang, Ji-Guang .
ADVANCED ENERGY MATERIALS, 2018, 8 (07)
[2]   Building better batteries [J].
Armand, M. ;
Tarascon, J. -M. .
NATURE, 2008, 451 (7179) :652-657
[3]   Achieving High Energy Density through Increasing the Output Voltage: A Highly Reversible 5.3 V Battery [J].
Chen, Long ;
Fan, Xiulin ;
Hu, Enyuan ;
Ji, Xiao ;
Chen, Ji ;
Hou, Singyuk ;
Deng, Tao ;
Li, Jing ;
Su, Dong ;
Yang, Xiaoqing ;
Wang, Chunsheng .
CHEM, 2019, 5 (04) :896-912
[4]   Upgrading Electrode/Electrolyte Interphases via Polyamide-Based Quasi-Solid Electrolyte for Long-Life Nickel-Rich Lithium Metal Batteries [J].
Chen, Minjian ;
Ma, Cheng ;
Ding, Zhengping ;
Zhou, Liangjun ;
Chen, Libao ;
Gao, Peng ;
Wei, Weifeng .
ACS ENERGY LETTERS, 2021, 6 (04) :1280-1289
[5]   High-Voltage Lithium-Metal Batteries Enabled by Localized High-Concentration Electrolytes [J].
Chen, Shuru ;
Zheng, Jianming ;
Mei, Donghai ;
Han, Kee Sung ;
Engelhard, Mark H. ;
Zhao, Wengao ;
Xu, Wu ;
Liu, Jun ;
Zhang, Ji-Guang .
ADVANCED MATERIALS, 2018, 30 (21)
[6]   Toward Safe Lithium Metal Anode in Rechargeable Batteries: A Review [J].
Cheng, Xin-Bing ;
Zhang, Rui ;
Zhao, Chen-Zi ;
Zhang, Qiang .
CHEMICAL REVIEWS, 2017, 117 (15) :10403-10473
[7]   Gel/Solid Polymer Electrolytes Characterized by In Situ Gelation or Polymerization for Electrochemical Energy Systems [J].
Cho, Yoon-Gyo ;
Hwang, Chihyun ;
Cheong, Do Sol ;
Kim, Young-Soo ;
Song, Hyun-Kon .
ADVANCED MATERIALS, 2019, 31 (20)
[8]   Challenges in the development of advanced Li-ion batteries: a review [J].
Etacheri, Vinodkumar ;
Marom, Rotem ;
Elazari, Ran ;
Salitra, Gregory ;
Aurbach, Doron .
ENERGY & ENVIRONMENTAL SCIENCE, 2011, 4 (09) :3243-3262
[9]   High-voltage liquid electrolytes for Li batteries: progress and perspectives [J].
Fan, Xiulin ;
Wang, Chunsheng .
CHEMICAL SOCIETY REVIEWS, 2021, 50 (18) :10486-10566
[10]   The Li-Ion Rechargeable Battery: A Perspective [J].
Goodenough, John B. ;
Park, Kyu-Sung .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2013, 135 (04) :1167-1176