Symmetrically global pseudo-differential operators involving the Weinstein transform

被引:3
作者
Sartaj, Mohd [1 ]
Upadhyay, S. K. [1 ]
机构
[1] Indian Inst Technol BHU, Dept Math Sci, Varanasi 221005, Uttar Pradesh, India
关键词
Weinstein transform; Symbol class; Pseudo-differential operators; Minimal-maximal operators; Sobolev space;
D O I
10.1007/s11868-023-00543-5
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, boundedness and compactness results for symmetrically global pseudodifferential operator on L p a(Rn+1 +)-type Sobolev space Hr,s,p a of order (r, s) are investigated by exploiting the theory of the Weinstein transform. Using symmetrically global symbol s(x,.) in S-m1,(m2,) m1, m2. epsilon R, we have discussed various properties of minimal-maximal pseudo-differential operators involving theWeinstein transform. The weak solution of the symmetrically global pseudo-differential equation is obtained by using aforesaid theory.
引用
收藏
页数:20
相关论文
共 50 条
[31]   Pseudo-Differential Operators in Algebras of Generalized Functions and Global Hypoellipticity [J].
Claudia Garetto .
Acta Applicandae Mathematica, 2004, 80 :123-174
[32]   Composition of pseudo-differential operators associated with Kontorovich-Lebedev transform [J].
Prasad, Akhilesh ;
Mandal, U. K. .
INTEGRAL TRANSFORMS AND SPECIAL FUNCTIONS, 2016, 27 (11) :878-892
[33]   On the boundedness of pseudo-differential operators associated with the Dunkl transform on the real line [J].
Amri, Bechir ;
Mustapha, Sami ;
Sifi, Mohamed .
ADVANCES IN PURE AND APPLIED MATHEMATICS, 2011, 2 (01) :89-107
[34]   A framework of linear canonical transform on pseudo-differential operators and its application [J].
Kumar, Manish ;
Pradhan, Tusharakanta .
MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2021, 44 (14) :11425-11443
[35]   Boundedness of pseudo-differential operators via coupled fractional Fourier transform [J].
Das, Shraban ;
Mahato, Kanailal ;
Das, Sourav .
APPLICABLE ANALYSIS, 2025, 104 (04) :663-681
[36]   A pointwise estimate for pseudo-differential operators [J].
Wang, Guangqing ;
Chen, Wenyi .
BULLETIN OF MATHEMATICAL SCIENCES, 2023, 13 (02)
[37]   On the boundedness of periodic pseudo-differential operators [J].
Cardona, Duvan .
MONATSHEFTE FUR MATHEMATIK, 2018, 185 (02) :189-206
[38]   The endpoint estimates for pseudo-differential operators [J].
Wu, Guoning ;
Yang, Jie .
ARCHIV DER MATHEMATIK, 2025, 124 (06) :675-681
[39]   Pseudo-differential operators on compact groupoids [J].
Sridharan, K. N. ;
Kumar, N. Shravan .
JOURNAL OF PSEUDO-DIFFERENTIAL OPERATORS AND APPLICATIONS, 2025, 16 (03)
[40]   Quantization of Pseudo-differential Operators on the Torus [J].
Michael Ruzhansky ;
Ville Turunen .
Journal of Fourier Analysis and Applications, 2010, 16 :943-982