Obstacle Avoidance Based on Deep Reinforcement Learning and Artificial Potential Field

被引:3
作者
Han, Haoran [1 ]
Xi, Zhilong [1 ]
Cheng, Jian [1 ]
Lv, Maolong [2 ]
机构
[1] Univ Elect Sci & Technol China, Sch Informat & Commun Engn, Chengdu, Peoples R China
[2] Air Force Engn Univ, Air Traff Control & Nav Coll, Xian, Peoples R China
来源
2023 9TH INTERNATIONAL CONFERENCE ON CONTROL, AUTOMATION AND ROBOTICS, ICCAR | 2023年
关键词
obstacle avoidance; deep reinforcement learning (DRL); artificial potential field (APF);
D O I
10.1109/ICCAR57134.2023.10151771
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Obstacle avoidance is an essential part of mobile robot path planning, since it ensures the safety of automatic control. This paper proposes an obstacle avoidance algorithm that combines artificial potential field with deep reinforcement learning (DRL). State regulation is presented so that the pre-defined velocity constraint could be satisfied. To guarantee the isotropy of the robot controller as well as reduce training complexity, coordinate transformation into normal direction and tangent direction is introduced, making it possible to use one-dimension controllers to work in a two-dimension task. Artificial potential field (APF) is modified such that the obstacle directly affects the intermediate target positions instead of the control commands, which can well be used to guide the previously trained one-dimension DRL controller. Experiment results show that the proposed algorithm successfully achieved obstacle avoidance tasks in single-agent and multi-agent scenarios.
引用
收藏
页码:215 / 220
页数:6
相关论文
共 50 条
  • [21] Monocular Camera-Based Complex Obstacle Avoidance via Efficient Deep Reinforcement Learning
    Ding, Jianchuan
    Gao, Lingping
    Liu, Wenxi
    Piao, Haiyin
    Pan, Jia
    Du, Zhenjun
    Yang, Xin
    Yin, Baocai
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 2023, 33 (02) : 756 - 770
  • [22] Reinforcement Learning Based Obstacle Avoidance for Autonomous Underwater Vehicle
    Prashant Bhopale
    Faruk Kazi
    Navdeep Singh
    Journal of Marine Science and Application, 2019, 18 : 228 - 238
  • [23] Real-Time Obstacle Avoidance and Pathfinding for Robot Manipulators Based on Deep Reinforcement Learning
    Hu, Jun
    Mao, Jianliang
    Zhou, Xin
    Zhang, Chuanlin
    INTELLIGENT ROBOTICS AND APPLICATIONS, ICIRA 2024, PT III, 2025, 15203 : 154 - 166
  • [24] Reinforcement Learning Based Obstacle Avoidance for Autonomous Underwater Vehicle
    Bhopale, Prashant
    Kazi, Faruk
    Singh, Navdeep
    JOURNAL OF MARINE SCIENCE AND APPLICATION, 2019, 18 (02) : 228 - 238
  • [25] An obstacle avoidance method for robotic arm based on reinforcement learning
    Wu, Peng
    Su, Heng
    Dong, Hao
    Liu, Tengfei
    Li, Min
    Chen, Zhihao
    INDUSTRIAL ROBOT-THE INTERNATIONAL JOURNAL OF ROBOTICS RESEARCH AND APPLICATION, 2025, 52 (01): : 9 - 17
  • [26] Real-time obstacle avoidance with deep reinforcement learning * Three-Dimensional Autonomous Obstacle Avoidance for UAV
    Yang, Songyue
    Meng, Zhijun
    Chen, Xuzhi
    Xie, Ronglei
    PROCEEDINGS OF THE 2019 INTERNATIONAL CONFERENCE ON ROBOTICS, INTELLIGENT CONTROL AND ARTIFICIAL INTELLIGENCE (RICAI 2019), 2019, : 324 - 329
  • [27] Path Planning and Evaluation for Obstacle Avoidance of Manipulator Based on Improved Artificial Potential Field and Danger Field
    Zhao, Jiangbo
    Zhao, Qiang
    Wang, Junzheng
    Zhang, Xin
    Wang, Yanlong
    PROCEEDINGS OF THE 33RD CHINESE CONTROL AND DECISION CONFERENCE (CCDC 2021), 2021, : 3018 - 3025
  • [28] Toward Obstacle Avoidance for Mobile Robots Using Deep Reinforcement Learning Algorithm
    Gao, Xiaoshan
    Yan, Liang
    Wang, Gang
    Wang, Tiantian
    Du, Nannan
    Gerada, Chris
    PROCEEDINGS OF THE 2021 IEEE 16TH CONFERENCE ON INDUSTRIAL ELECTRONICS AND APPLICATIONS (ICIEA 2021), 2021, : 2136 - 2139
  • [29] The autonomous navigation and obstacle avoidance for USVs with ANOA deep reinforcement learning method
    Wu, Xing
    Chen, Haolei
    Chen, Changgu
    Zhong, Mingyu
    Xie, Shaorong
    Guo, Yike
    Fujita, Hamido
    KNOWLEDGE-BASED SYSTEMS, 2020, 196 (196)
  • [30] Concise deep reinforcement learning obstacle avoidance for underactuated unmanned marine vessels
    Cheng, Yin
    Zhang, Weidong
    NEUROCOMPUTING, 2018, 272 : 63 - 73