Fish-TViT: A novel fish species classification method in multi water areas based on transfer learning and vision transformer

被引:19
作者
Gong, Bo [1 ,2 ,3 ]
Dai, Kanyuan [3 ,4 ,5 ]
Shao, Ji [1 ,2 ,4 ]
Jing, Ling [1 ,2 ,3 ,4 ,5 ]
Chen, Yingyi [1 ,2 ,3 ,4 ]
机构
[1] China Agr Univ, Coll Informat & Elect Engn, Beijing 100083, Peoples R China
[2] China Agr Univ, Natl Innovat Ctr Digital Fishery, Beijing 100083, Peoples R China
[3] Minist Agr & Rural Affairs, Key Lab Smart Farming Technol Aquat Anim & Livesto, Beijing 100083, Peoples R China
[4] China Agr Univ, Beijing Engn & Technol Res Ctr Internet Things Agr, Beijing 100083, Peoples R China
[5] China Agr Univ, Coll Sci, Beijing 100083, Peoples R China
基金
中国国家自然科学基金;
关键词
Fish species classification; Deep learning; Vision transformer; Transfer learning; IDENTIFICATION;
D O I
10.1016/j.heliyon.2023.e16761
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The classification of fish species has important practical significance for both the aquaculture industry and ordinary people. However, existing methods for classifying marine and freshwater fishes have poor feature extraction ability and do not meet actual needs. To address this issue, we propose a novel method for multi-water fish classification (Fish-TViT) based on transfer learning and visual transformers. Fish-TViT uses a label smoothing loss function to solve the problem of overfitting and overconfidence of the classifier. We also employ Gradient-weighted Category Activation Mapping (Grad-CAM) technology to visualize and understand the features of the model and the areas on which the decision depends, which guides the optimization of the model architecture. We first crop and clean fish images, and then use data augmentation to expand the number of training datasets. A pre-trained visual transformer model is used to extract enhanced features of fish images, which are subsequently cropped into a series of flat patches. Finally, a multi-layer perceptron is used to predict fish species. Experimental results show that Fish-TViT achieves high classification accuracy on both low-resolution marine fish data (94.33%) and high-resolution freshwater fish data (98.34%). Compared with traditional convolutional neural networks, Fish-TViT has better performance.
引用
收藏
页数:12
相关论文
共 38 条
[1]   Fish species identification using a convolutional neural network trained on synthetic data [J].
Allken, Vaneeda ;
Handegard, Nils Olav ;
Rosen, Shale ;
Schreyeck, Tiffanie ;
Mahiout, Thomas ;
Malde, Ketil .
ICES JOURNAL OF MARINE SCIENCE, 2019, 76 (01) :342-349
[2]   Computer vision system using deep learning to predict rib and loin yield in the fish Colossoma macropomum [J].
Ariede, Raquel B. ;
Lemos, Celma G. ;
Batista, Fabricio M. ;
Oliveira, Rubens R. ;
Agudelo, John F. G. ;
Borges, Carolina H. S. ;
Iope, Rogerio L. ;
Almeida, Fernanda L. O. ;
Brega, Jose R. F. ;
Hashimoto, Diogo T. .
ANIMAL GENETICS, 2023, 54 (03) :375-388
[3]  
Dosovitskiy A, 2021, Arxiv, DOI [arXiv:2010.11929, DOI 10.48550/ARXIV.2010.11929]
[4]  
Froese R., 2022, FISHBASE
[5]   Re-identification of fish individuals of undulate skate via deep learning within a few-shot context [J].
Gomez-Vargas, Nuria ;
Alonso-Fernandez, Alexandre ;
Blanquero, Rafael ;
Antelo, Luis T. .
ECOLOGICAL INFORMATICS, 2023, 75
[6]   IPez: An expert system for the taxonomic identification of fishes based on machine learning techniques [J].
Guisande, C. ;
Manjarres-Hernandez, A. ;
Pelayo-Villamil, P. ;
Granado-Lorencio, C. ;
Riveiro, I. ;
Acuna, A. ;
Prieto-Piraquive, E. ;
Janeiro, E. ;
Matias, J. M. ;
Patti, C. ;
Patti, B. ;
Mazzola, S. ;
Jimenez, S. ;
Duque, V. ;
Salmeron, F. .
FISHERIES RESEARCH, 2010, 102 (03) :240-247
[7]  
Guo MH, 2022, Arxiv, DOI arXiv:2202.09741
[8]   Fish Species Classification using Graph Embedding Discriminant Analysis [J].
Hasija, Snigdhaa ;
Buragohain, Manas Jyoti ;
Indu, S. .
2017 INTERNATIONAL CONFERENCE ON MACHINE VISION AND INFORMATION TECHNOLOGY (CMVIT), 2017, :81-86
[9]   Deep Residual Learning for Image Recognition [J].
He, Kaiming ;
Zhang, Xiangyu ;
Ren, Shaoqing ;
Sun, Jian .
2016 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2016, :770-778
[10]   Fish Classification Based on Robust Features Selection Using Machine Learning Techniques [J].
Hnin, Than Thida ;
Lynn, Khin Thidar .
GENETIC AND EVOLUTIONARY COMPUTING, VOL I, 2016, 387 :237-245