Ricci-Bourguignon Soliton on Three-Dimensional Contact Metric Manifolds

被引:0
|
作者
Khatri, Mohan [1 ]
Singh, Jay Prakash [2 ]
机构
[1] Pachhunga Univ Coll, Dept Math, Aizawl 796001, Mizoram, India
[2] Cent Univ South Bihar, Dept Math, Gaya 824236, India
关键词
Ricci-Bourguignon soliton; sasakian; lie group; contact metric manifolds; isometry; EINSTEIN;
D O I
10.1007/s00009-024-02609-0
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper aims to classify a certain type of three-dimensional complete non-Sasakian contact manifold with specific properties, namely Q xi=sigma xi\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$Q\xi =\sigma \xi $$\end{document} and admitting Ricci-Bourguignon solitons. In the case of constant sigma\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sigma $$\end{document}, the paper proves that if the potential vector field of the Ricci-Bourguignon soliton is orthogonal to the Reeb vector field, then the manifold is either Einstein or locally isometric to E(1, 1). Under a similar hypothesis, the paper shows that a (kappa,mu,& thetasym;)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(\kappa ,\mu ,\vartheta )$$\end{document}-contact metric manifold is locally isometric to E(1, 1). Finally, the paper considers the scenario where the potential vector is pointwise collinear with the Reeb vector field and presents some results.
引用
收藏
页数:13
相关论文
共 50 条