Automorphism group of 2-token graph of the Hamming graph

被引:0
|
作者
Zhang, Ju [1 ]
Zhou, Jin-Xin [1 ]
Lee, Jaeun [2 ]
Li, Yan-Tao [3 ]
Xie, Jin-Hua [1 ]
机构
[1] Beijing Jiaotong Univ, Dept Math, Beijing 100044, Peoples R China
[2] Yeungnam Univ, Dept Math, 280 Daehak Ro, Gyongsan 38541, Gyeongbuk, South Korea
[3] Beijing Union Univ, Coll Appl Arts & Sci, Dept Urban Sci, Beijing 100191, Peoples R China
基金
中国国家自然科学基金; 新加坡国家研究基金会;
关键词
Hamming graph; 2-token graphs; Automorphism group;
D O I
10.1016/j.disc.2023.113689
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let G be a graph. The 2 -token graph F2(G) of G is with vertex set all the 2-subsets of V (G) such that two 2-subsets are adjacent if their symmetric difference is exactly an edge of G. In this paper, the full automorphism group of the 2-token graph of the Hamming graph is determined. (c) 2023 Elsevier B.V. All rights reserved.
引用
收藏
页数:10
相关论文
共 50 条
  • [41] The conjugacy problem for the automorphism group of the random graph
    Samuel Coskey
    Paul Ellis
    Scott Schneider
    Archive for Mathematical Logic, 2011, 50 : 215 - 221
  • [42] The automorphisms of 2-token graphs
    Zhang, Ju
    Zhou, Jin-Xin
    Li, Yan-Tao
    Kwon, Young Soo
    APPLIED MATHEMATICS AND COMPUTATION, 2023, 446
  • [43] The conjugacy problem for the automorphism group of the random graph
    Coskey, Samuel
    Ellis, Paul
    Schneider, Scott
    ARCHIVE FOR MATHEMATICAL LOGIC, 2011, 50 (1-2) : 215 - 221
  • [44] Full automorphism group of the generalized symplectic graph
    Zeng LiWei
    Chai Zhao
    Feng RongQuan
    Ma ChangLi
    SCIENCE CHINA-MATHEMATICS, 2013, 56 (07) : 1509 - 1520
  • [45] Automorphism group and the convex subgraphs of the quadratic forms graph in characteristic 2
    Munemasa, A.
    Pasechnik, D.V.
    Shpectorov, S.V.
    Journal of Algebraic Combinatorics, 1993, 2 (04):
  • [46] AUTOMORPHISM GROUP OF 2-D DEBRUIJN-GOOD GRAPH
    LIU, ML
    CHINESE SCIENCE BULLETIN, 1991, 36 (04): : 270 - 274
  • [47] Automorphism group of the reduced power (di)graph of a finite group
    Anitha, T.
    Rajkumar, R.
    COMMUNICATIONS IN ALGEBRA, 2025, 53 (02) : 687 - 703
  • [48] The full automorphism group of the power (di)graph of a finite group
    Feng, Min
    Ma, Xuanlong
    Wang, Kaishun
    EUROPEAN JOURNAL OF COMBINATORICS, 2016, 52 : 197 - 206
  • [49] On the bandwidth of a Hamming graph
    Harper, LH
    THEORETICAL COMPUTER SCIENCE, 2003, 301 (1-3) : 491 - 498
  • [50] Hamming Matrix and Hamming Energy of a Graph
    Vucicevic, Nemanja
    Redzepovic, Izudin
    Stojanovic, Nenad
    MATCH-COMMUNICATIONS IN MATHEMATICAL AND IN COMPUTER CHEMISTRY, 2025, 93 (03)