Leveraging genetic diversity to identify small molecules that reverse mouse skeletal muscle insulin resistance

被引:11
作者
Masson, Stewart W. C. [1 ]
Madsen, Soren [1 ]
Cooke, Kristen C. [1 ]
Potter, Meg [1 ]
Vegas, Alexis Diaz [1 ]
Carroll, Luke [2 ]
Thillainadesan, Senthil [1 ]
Cutler, Harry B. [1 ]
Walder, Ken R. [3 ]
Cooney, Gregory J. [1 ]
Morahan, Grant [4 ]
Stockli, Jacqueline [1 ]
James, David E. [1 ,5 ]
机构
[1] Univ Sydney, Sch Life & Environm Sci, Charles Perkins Ctr, Camperdown, NSW, Australia
[2] Macquarie Univ, Australian Proteome Anal Facil, Macquarie Pk, Australia
[3] Deakin Univ, Sch Med, Geelong, Vic, Australia
[4] Harry Perkins Inst Med Res, Ctr Diabet Res, Murdoch, WA, Australia
[5] Univ Sydney, Sch Med Sci, Sydney, NSW, Australia
基金
澳大利亚研究理事会;
关键词
skeletal muscle; insulin resistance; Diversity Outbred; thiostrepton; drug repurposing; Mouse; SYNTHASE KINASE 3-BETA; CONNECTIVITY MAP; 3T3-L1; ADIPOCYTES; SYSTEMS GENETICS; GLUCOSE-UPTAKE; CELL-SURFACE; PROTEIN; GLUT4; EXPRESSION; METABOLISM;
D O I
10.7554/eLife.86961
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
Systems genetics has begun to tackle the complexity of insulin resistance by capitalising on computational advances to study high-diversity populations. 'Diversity Outbred in Australia (DOz)' is a population of genetically unique mice with profound metabolic heterogeneity. We leveraged this variance to explore skeletal muscle's contribution to whole-body insulin action through metabolic phenotyping and skeletal muscle proteomics of 215 DOz mice. Linear modelling identified 553 proteins that associated with whole-body insulin sensitivity (Matsuda Index) including regulators of endocytosis and muscle proteostasis. To enrich for causality, we refined this network by focusing on negatively associated, genetically regulated proteins, resulting in a 76-protein fingerprint of insulin resistance. We sought to perturb this network and restore insulin action with small molecules by integrating the Broad Institute Connectivity Map platform and in vitro assays of insulin action using the Prestwick chemical library. These complementary approaches identified the antibiotic thiostrepton as an insulin resistance reversal agent. Subsequent validation in ex vivo insulin-resistant mouse muscle and palmitate-induced insulin-resistant myotubes demonstrated potent insulin action restoration, potentially via upregulation of glycolysis. This work demonstrates the value of a drug-centric framework to validate systems-level analysis by identifying potential therapeutics for insulin resistance.
引用
收藏
页数:28
相关论文
共 112 条
[1]   Global signatures of protein and mRNA expression levels [J].
Abreu, Raquel de Sousa ;
Penalva, Luiz O. ;
Marcotte, Edward M. ;
Vogel, Christine .
MOLECULAR BIOSYSTEMS, 2009, 5 (12) :1512-1526
[2]   A novel approach to measure mitochondrial respiration in frozen biological samples [J].
Acin-Perez, Rebeca ;
Benador, Ilan Y. ;
Petcherski, Anton ;
Veliova, Michaela ;
Benavides, Gloria A. ;
Lagarrigue, Sylviane ;
Caudal, Arianne ;
Vergnes, Laurent ;
Murphy, Anne N. ;
Karamanlidis, Georgios ;
Tian, Rong ;
Reue, Karen ;
Wanagat, Jonathan ;
Sacks, Harold ;
Amati, Francesca ;
Darley-Usmar, Victor M. ;
Liesa, Marc ;
Divakaruni, Ajit S. ;
Stiles, Linsey ;
Shirihai, Orian S. .
EMBO JOURNAL, 2020, 39 (13)
[3]   Mitochondrial uncoupler BAM15 reverses diet-induced obesity and insulin resistance in mice [J].
Alexopoulos, Stephanie J. ;
Chen, Sing-Young ;
Brandon, Amanda E. ;
Salamoun, Joseph M. ;
Byrne, Frances L. ;
Garcia, Christopher J. ;
Beretta, Martina ;
Olzomer, Ellen M. ;
Shah, Divya P. ;
Philp, Ashleigh M. ;
Hargett, Stefan R. ;
Lawrence, Robert T. ;
Lee, Brendan ;
Sligar, James ;
Carrive, Pascal ;
Tucker, Simon P. ;
Philp, Andrew ;
Lackner, Carolin ;
Turner, Nigel ;
Cooney, Gregory J. ;
Santos, Webster L. ;
Hoehn, Kyle L. .
NATURE COMMUNICATIONS, 2020, 11 (01)
[4]   Mitochondrial H2O2 emission and cellular redox state link excess fat intake to insulin resistance in both rodents and humans [J].
Anderson, Ethan J. ;
Lustig, Mary E. ;
Boyle, Kristen E. ;
Woodlief, Tracey L. ;
Kane, Daniel A. ;
Lin, Chien-Te ;
Price, Jesse W., III ;
Kang, Li ;
Rabinovitch, Peter S. ;
Szeto, Hazel H. ;
Houmard, Joseph A. ;
Cortright, Ronald N. ;
Wasserman, David H. ;
Neufer, P. Darrell .
JOURNAL OF CLINICAL INVESTIGATION, 2009, 119 (03) :573-581
[5]  
[Anonymous], 2020, NPJ AGING MECH DIS
[6]   Clathrin-dependent and independent endocytosis of glucose transporter 4 (GLUT4) in myoblasts:: Regulation by mitochondrial uncoupling [J].
Antonescu, Costin N. ;
Diaz, Monica ;
Femia, Guiseppe ;
Planas, Josep V. ;
Klip, Amira .
TRAFFIC, 2008, 9 (07) :1173-1190
[7]   A platform for experimental precision medicine: The extended BXD mouse family [J].
Ashbrook, David G. ;
Arends, Danny ;
Prins, Pjotr ;
Mulligan, Megan K. ;
Roy, Suheeta ;
Williams, Evan G. ;
Lutz, Cathleen M. ;
Valenzuela, Alicia ;
Bohl, Casey J. ;
Ingels, Jesse F. ;
McCarty, Melinda S. ;
Centeno, Arthur G. ;
Hager, Reinmar ;
Auwerx, Johan ;
Lu, Lu ;
Williams, Robert W. .
CELL SYSTEMS, 2021, 12 (03) :235-+
[8]   The bacterial thiopeptide thiostrepton. An update of its mode of action, pharmacological properties and applications [J].
Bailly, Christian .
EUROPEAN JOURNAL OF PHARMACOLOGY, 2022, 914
[9]   The State of Systems Genetics in 2017 commentary [J].
Baliga, Nitin S. ;
Bjoerkegren, Johan L. M. ;
Boeke, Jef D. ;
Boutros, Michael ;
Crawford, Nigel P. S. ;
Dudley, Aimee M. ;
Farber, Charles R. ;
Jones, Allan ;
Levey, Allan I. ;
Lusis, Aldons J. ;
Mak, H. Craig ;
Nadeau, Joseph H. ;
Noyes, Marcus B. ;
Petretto, Enrico ;
Seyfried, Nicholas T. ;
Steinmetz, Lars M. ;
Vonesch, Sibylle C. .
CELL SYSTEMS, 2017, 4 (01) :7-15
[10]   Pyruvate Dehydrogenase Phosphatase Regulatory Gene Expression Correlates with Exercise Training Insulin Sensitivity Changes [J].
Barberio, Matthew D. ;
Huffman, Kim M. ;
Giri, Mamta ;
Hoffman, Eric P. ;
Kraus, William E. ;
Hubal, Monica J. .
MEDICINE AND SCIENCE IN SPORTS AND EXERCISE, 2016, 48 (12) :2387-2397