BolT: Fused window transformers for fMRI time series analysis

被引:46
作者
Bedel, Hasan A. [1 ,2 ]
Sivgin, Irmak [1 ,2 ]
Dalmaz, Onat [1 ,2 ]
Dar, Salman U. H. [1 ,2 ]
Cukur, Tolga [1 ,2 ,3 ]
机构
[1] Bilkent Univ, Dept Elect & Elect Engn, TR-06800 Ankara, Turkiye
[2] Bilkent Univ, Natl Magnet Resonance Res Ctr UMRAM, TR-06800 Ankara, Turkiye
[3] Bilkent Univ, Neurosci Program, TR-06800 Ankara, Turkiye
基金
加拿大健康研究院;
关键词
Functional MRI; Time series; Deep learning; Transformer; Classification; Connectivity; Explainability; STATE FUNCTIONAL CONNECTIVITY; INDEPENDENT COMPONENT; ALZHEIMERS-DISEASE; PATTERN-ANALYSIS; BRAIN; NETWORKS; CLASSIFICATION; AUTISM; MCI; IDENTIFICATION;
D O I
10.1016/j.media.2023.102841
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Deep-learning models have enabled performance leaps in analysis of high-dimensional functional MRI (fMRI) data. Yet, many previous methods are suboptimally sensitive for contextual representations across diverse time scales. Here, we present BolT, a blood-oxygen-level-dependent transformer model, for analyzing multi-variate fMRI time series. BolT leverages a cascade of transformer encoders equipped with a novel fused window attention mechanism. Encoding is performed on temporally-overlapped windows within the time series to capture local representations. To integrate information temporally, cross-window attention is computed between base tokens in each window and fringe tokens from neighboring windows. To gradually transition from local to global representations, the extent of window overlap and thereby number of fringe tokens are progressively increased across the cascade. Finally, a novel cross-window regularization is employed to align high-level classification features across the time series. Comprehensive experiments on large-scale public datasets demonstrate the superior performance of BolT against state-of-the-art methods. Furthermore, explanatory analyses to identify landmark time points and regions that contribute most significantly to model decisions corroborate prominent neuroscientific findings in the literature.
引用
收藏
页数:16
相关论文
共 129 条
[1]   Deriving reproducible biomarkers from multi-site resting-state data: An Autism-based example [J].
Abraham, Alexandre ;
Milham, Michael P. ;
Di Martino, Adriana ;
Craddock, R. Cameron ;
Samaras, Dimitris ;
Thirion, Bertrand ;
Varoquaux, Gael .
NEUROIMAGE, 2017, 147 :736-745
[2]   Tracking Whole-Brain Connectivity Dynamics in the Resting State [J].
Allen, Elena A. ;
Damaraju, Eswar ;
Plis, Sergey M. ;
Erhardt, Erik B. ;
Eichele, Tom ;
Calhoun, Vince D. .
CEREBRAL CORTEX, 2014, 24 (03) :663-676
[3]  
Alon U, 2021, Arxiv, DOI arXiv:2006.05205
[4]   Representational similarity encoding for fMRI: Pattern-based synthesis to predict brain activity using stimulus-model-similarities [J].
Anderson, Andrew James ;
Zinszer, Benjamin D. ;
Raizada, Rajeev D. S. .
NEUROIMAGE, 2016, 128 :44-53
[5]   Abnormal brain synchrony in Down Syndrome [J].
Anderson, Jeffrey S. ;
Nielsen, Jared A. ;
Ferguson, Michael A. ;
Burback, Melissa C. ;
Cox, Elizabeth T. ;
Dai, Li ;
Gerig, Guido ;
Edgin, Jamie O. ;
Korenberg, Julie R. .
NEUROIMAGE-CLINICAL, 2013, 2 :703-715
[6]   Real-Time Decoding of Brain Responses to Visuospatial Attention Using 7T fMRI [J].
Andersson, Patrik ;
Pluim, Josien P. W. ;
Siero, Jeroen C. W. ;
Klein, Stefan ;
Viergever, Max A. ;
Ramsey, Nick F. .
PLOS ONE, 2011, 6 (11)
[7]  
[Anonymous], 2013, Frontiers in Neuroinformatics
[8]  
Beltagy I, 2020, Arxiv, DOI [arXiv:2004.05150, 10.48550/arXiv.2004.05150]
[9]   The brain's default network - Anatomy, function, and relevance to disease [J].
Buckner, Randy L. ;
Andrews-Hanna, Jessica R. ;
Schacter, Daniel L. .
YEAR IN COGNITIVE NEUROSCIENCE 2008, 2008, 1124 :1-38
[10]   Functional magnetic resonance image analysis of a large-scale neurocognitive network [J].
Bullmore, ET ;
RabeHesketh, S ;
Morris, RG ;
Williams, SCR ;
Gregory, L ;
Gray, JA ;
Brammer, MJ .
NEUROIMAGE, 1996, 4 (01) :16-33